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Introduction and selection of a product/service  
Shared mobility services that offer one-time rentals of various vehicles, such as regular 

bikes, E-Mopeds, and E-bikes, have become increasingly common in urban travel across Europe. 

As European countries are favoring electric vehicles, and battery technology is developing and 

becoming cost-competitive, this novel form of rental mobility option has become a larger part of 

the product mix in the short-form transport market (micromobility market). This growth is 

expected to be sustained long-term as it meets previously unmet consumer needs, e.g., when 

private transport is unavailable, and public transport does not meet location needs or is unreliable. 

In the Netherlands, the largest shared mobility brands include Lime, CHECK, and Felyx, with 

offerings of e-mopeds and e-bikes, a sustainable alternative to the traditional gasoline mopeds that 

are common in the Dutch market (Montes, Geržinic, Veeneman, van Oort, & Hoogendoorn, 2023). 

Shared micromobility is a novel and not well-understood market, this is because consumer 

needs vary significantly in different subregions within each city. For example, offering e-bikes to 

a region that is well-served by trams/metros might not be a profitable venture, compared to regions 

that have fewer alternatives. In addition to geographic factors, several demographic factors play a 

role, e.g., older/family-oriented neighborhoods are more likely to have cars or other private options 

readily available (Fu, van Lierop, & Ettema, 2024). 

Studies show that 80% of individuals who typically use the shared-mobility options, such 

as Lime and CHECK, tend to be within the age range of 21-40, and approximately 71% hold some 

level of higher education, e.g., a bachelor’s degree or an applied science degree (Reck & Axhausen, 

2021). The demographic of this age group aligns more closely with the primary uses of shared 

micromobility, which is the daily commute to/from work or education (Reck & Axhausen, 2021; 

Montes, Geržinic, Veeneman, van Oort, & Hoogendoorn, 2023). 

As a result, the challenge is understanding the segment is essential for ensuring profitable 

ventures for firms in the shared micromobility industry. For example, which aspects of shared 

micromobility do these users value, and to what extent? Is their demand mainly driven by 

convenience, sustainability, price, travel time, or some combination of these factors?  

To investigate this, our study uses Discrete Choice Experiments (DCEs) to analyze the 

preferences of people primarily aged 18-40 in the Netherlands, as these individuals are likely to 

have interacted with shared micromobility options. The focus is to analyze how important price, 

travel time, and walking distance to the vehicle are, as well as how sustainable the vehicle they 



use is, in terms of CO2 emissions over the vehicle's lifetime. Furthermore, we investigate whether 

these preferences vary based on the income of the respondents and their self-reported sustainability 

focus. Identifying whether there is heterogeneity in the target segment allows for more specific 

consumer targeting and a better match of product offering. This will provide insights for 

potential/existing shared micromobility firms when deciding their profit offering. 

Attributes and levels: Describe how attributes and levels were derived 
Price attribute: Price levels were derived from real shared mobility prices in the 

Netherlands. For example, based on CHECK’s pricing of €0.35 per minute plus a €1 unlock fee, a 

3 km trip typically costs €2.80-€4.50 depending on vehicle type and traffic. To reflect realistic 

variation across modalities and traffic, we selected a price range of €2-€5 (see Table 1). 

Sustainability attribute: The sustainability attribute was defined as the lifecycle carbon 

footprint of each shared mobility option relative to a standard gasoline moped. We chose this 

relative framing for two main reasons. First, anchoring sustainability to a familiar reference point 

makes the survey more intuitive for respondents, as most users have a basic sense of how polluting 

a gas moped is and would not derive any meaning from raw emission values.  Second, estimating 

absolute CO2 emissions for electric vehicles is complex as it depends on factors such as the 

electricity mix, battery and vehicle production, and supply chains. Thus, expressing sustainability 

in relative terms provides a more accurate way to measure how sustainable modalities are 

compared to each other (see Table 1). 

Walking distance to the vehicle: Unlike public transport stops, shared mobility vehicles 

can be located anywhere within the service area, and availability fluctuates throughout the day. 

Users are often not in an ideal location when they start looking for a vehicle. For example, they 

may be on the edge of the service area or in a high-demand area with few vehicles nearby. For this 

reason, walking distance levels were chosen to represent realistic suboptimal conditions, where 

users may need to walk a small to medium-long distance to find an available vehicle. By looking 

at the distance of shared mobility hubs to various central stations, we found that distances range 

from 100-500 meters. These walking distance levels allow respondents to evaluate situations that 

closely resemble typical shared mobility use (See table 1). 

Travel time: The travel time levels were chosen to reflect realistic variations for a 3 km 

urban trip. In the best-case scenario, such as taking a fast moped or a car on uncongested streets, 



the trip can be completed in around 5 minutes. In contrast, under heavier traffic or with slower 

modalities, the same 3 km can take up to 15 minutes. By capturing this range between optimal and 

congested conditions, the selected travel time levels represent the variability users commonly face 

when using shared mobility services (See table 1). 

 

Table 1 Attributes and Levels 
Attribute Low Medium High 

Sustainability Level 0% CO2 25% CO2 50% CO2 

Price €2 €3.5 €5 

Distance to Vehicle 100 250 500 

Travel Time 5 10 15 

Methodology 
A Discrete Choice Experiment (DCE) is appropriate for this research because it allows us 

to estimate the relative importance that users assign to specific attributes of shared mobility 

options. By modelling choices as a function of these attributes, we can quantify how each one 

affects utility and user preferences. This provides a structured and empirical way to understand the 

role of sustainability relative to price, convenience, and speed in the adoption of shared mobility 

services. 

Each choice task contained two unlabeled mobility options: Option A and Option B, 

defined solely by their attributes (see Figure 1). Respondents were required to make a forced choice 

between the two alternatives, with no opt-out option provided. This is because adding an opt-out 

choice would require a bigger sample size to obtain significant results, which, given the scope of 

the survey collection, was not feasible. 

Furthermore, we chose a non-full factorial design because it allows us to independently 

estimate the effects of each attribute while avoiding the need to present respondents with every 

combination, preserving statistical power and interpretability with far fewer choice profiles. To 

obtain the combinations of the experimental design, we used a D-efficient design, which resulted 

in 24 different choice tasks1. 12 random tasks were shown to each participant to reduce the risk of 

cognitive fatigue respondents might occur if they had to answer 24 choice tasks. A fully 

 
1 Statistical identification of parameters: 8/(2-1)*3=24  



randomized design was chosen instead of blocking because the expected sample size of responses, 

up to about 120 respondents, would not sufficiently mitigate between-block differences. 

Randomizing individual questions, therefore, reduces the risk of systematic bias and provides a 

more balanced representation of respondent characteristics across the survey. 

Before the final design, a pilot study was first conducted to receive estimates on the priors 

of the various attributes that would then be used to make a more efficient design for the final 

survey. Due to a smaller sample size of the pilot study, only the size of some coefficients was used 

(e.g., price) while other coefficients were less significant but gave an indication of the direction of 

the prior (e.g., CO2 emissions). Furthermore, we collected feedback on the design of the survey 

and iterated our survey design to arrive at the following choice task visualization (Figure 1). 

 
Figure 1 Example Choice Task Shown to Respondents 

Before showing the choice tasks, the respondents were asked to imagine the following 

hypothetical scenario: “In this survey, you will be shown a hypothetical situation: You are 3 km 

away from your destination and must choose between different shared rental mobility options. 

Each option varies on four attributes: 1) CO2 Emissions, 2) Price for the full 3km trip, 3) Walking 

distance to the vehicle, and 4) Travel time.2  

The experimental design primarily identifies the main effects of each attribute by varying 

the attribute values in choice tasks. relative to competing attributes. Additionally, the survey 

incorporates respondent characteristics such as age, education, gender, and income. For example, 

someone with a high income might be less price sensitive. Large cross-national surveys find that 

people with a higher level of education tend to acknowledge that climate change is happening and 

might therefore care more about sustainability. By incorporating these respondent characteristics, 

 
2 See appendix 2 for the full design. 



the design allows for the estimation of interaction effects between demographic variables and the 

sustainability attribute. These interactions help assess how factors such as education level shape 

individuals’ preferences and their relative openness toward more sustainable mobility options. 

Survey respondent demographics and descriptive stats  
The survey included 122 respondents, most of whom were young adults: nearly half (49%) 

were aged 18–24, followed by 28% aged 25–34. The gender distribution was predominantly male 

(64%), with females representing 35% of the sample. Educational attainment was split mainly 

between bachelor’s degree holders (38%) and those with a high-school education (37%). Income 

levels were broadly dispersed, though the largest groups reported earnings below €25,000 (26%) 

or between €25,000–49,999 (25%). When it came 

to sustainability, 39.5% of people stated they were 

“Mostly Concerned” with sustainability, 25.8% 

stated they were neither or not concerned, and 

19.4% said they were mostly unconcerned, whilst 

only 3.2% said they were very concerned. Overall, 

the sample consisted mostly of younger 

participants with varying educational backgrounds, 

income levels, and a 50/50 attitude towards 

sustainability. 
All demographic variables were converted into binary dummy variables by splitting the 

data. Age was split into below/above age 25. Income was split into below/above 50k. Gender was 

converted into Male/Female, as the “Other” category only had one response and would thus not 

yield any significant evaluation. 

We estimated several discrete choice models to examine respondents’ decision patterns. 

As a starting point, we employed a standard multinomial logit (MNL) specification using only the 

attributes included in the choice experiment. Because all attributes are categorical, reference levels 

were defined to avoid multicollinearity: for each attribute, the lowest or most preferable level 

served as the baseline. Specifically, the reference categories were No CO₂, €2, 100 meters, and 5 

minutes. Another MNL model was run using continuous variables since the categorical version of 

the MNL yielded almost linear results in the effects. 

Figure 2 Survey Age and Gender Distribution 



All other levels were coded relative to these baselines. The resulting utility function for 

alternative 𝑖 (where 𝑖 = 1, 2) was defined as follows: 

𝑈𝑖 = 𝛽𝐶02, 𝑚 ⋅ 𝐶𝑂2𝑚,𝑖  +  𝛽𝐶02, ℎ ⋅ 𝐶𝑂2ℎ,𝑖  +  𝛽𝑝𝑟𝑖𝑐𝑒, 35 ⋅ 𝑝𝑟𝑖𝑐𝑒3.5,𝑖  +  𝛽𝐷𝑖𝑠𝑡, 250 ⋅ 𝐷𝑖𝑠𝑡250,𝑖 
+  𝛽𝐷𝑖𝑠𝑡, 500 ⋅ 𝐷𝑖𝑠𝑡500,𝑖  +  𝛽𝑇𝑖𝑚𝑒, 10 ⋅ 𝑇𝑖𝑚𝑒10,𝑖  +  𝛽𝑇𝑖𝑚𝑒, 15 ⋅ 𝑇𝑖𝑚𝑒15,𝑖  +  𝜀𝑖 

The Multinomial Logit with Interactions added the interaction of income with price and 

walking distance with age and sustainability perception with Co2 choice. 

𝑈𝑖 = 𝛽𝐶02, 4𝑥 ⋅ 𝐶𝑂24𝑥,𝑖  +  𝛽𝐶02, 2𝑥 ⋅ 𝐶𝑂22𝑥,𝑖  +  𝛽𝑝𝑟𝑖𝑐𝑒, 3.5 ⋅ 𝑝𝑟𝑖𝑐𝑒3.5,𝑖  +  𝛽𝑝𝑟𝑖𝑐𝑒, 5 ⋅ 𝑝𝑟𝑖𝑐𝑒5,𝑖 
+  𝛽𝐷𝑖𝑠𝑡, 250 ⋅ 𝐷𝑖𝑠𝑡250,𝑖  +  𝛽𝐷𝑖𝑠𝑡, 500 ⋅ 𝐷𝑖𝑠𝑡500,𝑖  +  𝛽𝑇𝑖𝑚𝑒, 10 ⋅ 𝑇𝑖𝑚𝑒10,𝑖  +  𝛽𝑇𝑖𝑚𝑒, 15

⋅ 𝑇𝑖𝑚𝑒15,𝑖  + 𝛽𝐷𝑖𝑠𝑡∗𝐴𝑔𝑒 ⋅ 𝐷𝑖𝑠𝑡 ∗ 𝐴𝑔𝑒 + 𝛽𝐼𝑛𝑐𝑜𝑚𝑒∗𝑃𝑟𝑖𝑐𝑒 ⋅ 𝐼𝑛𝑐𝑜𝑚𝑒 ∗ 𝑃𝑟𝑖𝑐𝑒
+ 𝛽𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦∗𝐶𝑜2 ⋅ 𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝐶𝑜2 +  𝜀𝑖 

Moreover, we estimated a Latent Class Multinomial Logit Model to identify potential 

subgroups within the shared mobility sample whose preferences differ systematically. The latent 

class approach assumes that the population is composed of a finite number of unobserved classes, 

each characterized by distinct preference structures. For this study, we specified two latent classes, 

motivated by the expectation that respondents may differ in how they value sustainability, price, 

distance to the vehicle, and travel time. A 2-segment model was run as it yielded more significant 

results. 

In addition to the multinomial logit, we estimated a Mixed Logit Model to account for 

unobserved preference heterogeneity in shared-mobility choices. The utility specification followed 

the same structure as in the MNL model, but the attribute coefficients were treated as random 

rather than fixed. Each random parameter was expressed as: 

𝑈𝑖 = μβ +  𝜎𝛽   + 𝜀𝑖 

Where the errors (ԑi) are normally distributed random variables with mean zero and unit 

variance. This formulation allows respondents to differ in how strongly they value changes in 

sustainability level, price, distance to the vehicle, and travel time. 

Results 
After estimating all the candidate models discussed previously, we selected the categorical 

MNL model with interaction effects as our final model. This selection was based on model fit and 

information criteria; these being the log-likelihood values (LL), the Akaike information criterion 



(AIC), and the Schwarz information criterion (BIC). The values obtained by these models can be 

viewed in the appendix. 

Our chosen model outperformed the alternative model options on every criterion (see Table 

2), indicating that accounting for interaction effects greatly improves explanatory power. 

Therefore, we will discuss the results obtained in this model. 

Table 2 Mixed Logit Performance Characteristics 
Model LL AIC BIC 

MNL_continuous -869.3 1748 1774 

MNL_categorical -866.38 1748.77 1790.95 

MNL_interactions cat -480.19 988.38 1054.45 

Latent Class cat -779.91 1603 1719 

MixedLogit cat 

MNL_interactions cont 

Latent Class cont 

Mixed Logit cont 

-784.9 

-855.23 

-783.89 

-725.11 

1601 

1728 

1599 

1470 

1686 

1775 

1684 

1522 

Table 3 Multinomial Logit Model with interaction effects 
Parameter Estimate Std. error P-value 

b_co2m -0.028 0.138 0.841 

b_co2h -0.151 0.176 0.389 

b_pricem -1.033 0.214 0.000 

b_priceh -2.520 0.450 0.000 

b_wdm -0.199 0.131 0.130 

b_wdh -0.691 0.150 0.000 

b_ttm -0.509 0.110 0.000 

b_tth -1.122 0.189 0.000 

b_co2m_green -0.350 0.226 0.121 

b_co2h_green -0.669 0.272 0.015 

b_pricem_wealthy 0.669 0.285 0.019 

b_priceh_wealthy 1.229 0.562 0.029 



b_wdm_ageold -0.235 0.240 0.327 

b_wdh_ageold -0.504 0.292 0.085 

Table 3 reports the parameter estimates. As expected, price, walking distance, and travel 

time all exert a negative effect on utility. Both medium and high price levels are highly significant 

and negative, indicating that respondents are strongly price sensitive. For walking distances, the 

coefficient for 500 meters is negative and statistically significant, while the effect of 250 meters is 

negative but not significant, suggesting that only relatively long walking distances substantially 

reduce utility. Likewise, both the 10-minute and 15-minute travel time levels significantly decrease 

utility, with the larger coefficient for 15 minutes indicating a stronger dislike of longer in-vehicle 

time. Interestingly, the C02 coefficient for both high and low emissions is negative, but not 

significant, suggesting that the model was not able to estimate how C02 impacts sustainability. 

Small standard errors for Co2, travel time, and distance indicate that these effects would 

not vary much across repeated samples, so we can be relatively confident in their size and sign. 

Larger standard errors for the high price level and interaction effect terms imply more 

uncertainty around those effects, even though their signs align with expectations. 

The interaction between sustainability and self-reported sustainability shows that only the 

high-emission level is statistically significant (p = 0.015), indicating that sustainability-aware 

individuals strongly dislike the most polluting options, while the medium level is not significant 

(p = 0.121). The income-price interactions are positive and significant at the 5% level (p = 0.019 

and 0.029), meaning wealthier respondents are significantly less sensitive to both medium and 

high price increases. For age-distance, the coefficients are negative but not statistically significant 

at 5% (250 m: p = 0.327; 500 m: weakly significant at p = 0.085), suggesting older respondents 

may be more averse to long walking distances, but this effect is only weakly supported by the data. 

Willingness to pay 

Using the medium price coefficient in Table 5 as a monetary benchmark, the sustainability 

coefficients can be expressed as willingness to pay. For the average respondent, the utility loss 

from increasing emissions from 0% to 50% (–0.151) corresponds to a WTP of only about 

€0.15(0.151/1.033) to avoid that change. Among sustainability-oriented (“green”) respondents, the 

relevant effect combines the main CO₂ coefficient and the interaction term (–0.151 – 0.669 = –



0.820), implying a much higher WTP of roughly €0.79 to avoid the high-emission option. This 

shows that while the typical respondent places a relatively small monetary value on emission 

reductions, environmentally conscious individuals are willing to pay several times more for the 

most sustainable alternative. 

Marginal Utility Effects 

Table 4 Marginal Effects of Multinomial Logit Model with interaction effects 
Attribute From To Alt DP 

CO2 0% Co2 25% Co2 0.006945 

CO2 0% Co2 50% Co2 0.03775  

CO2_green 0% Co2 25% Co2 -0.0866 

CO2_green 0% Co2 50% Co2 0.1593 

Price €2 €3.5 -0.2374 

Price €2 €5 -0.4255 

Price_Rich €2 €3.5 0.1612 

Price_Rich €2 €5 0.27355 

Walking Distance 100m 250m 0.04948 

Walking Distance 100m 500m 0.1662 

Walking Distance_Age 100m 250m 0.05838 

Walking Distance_Age 100m 500m 0.1232 

Time Travel 5 min 10 min 0.1244 

Time Travel 5 min 15 min 0.2543 

*Only absolute values are reported 

Overall, the price attribute was found to have the biggest marginal effect. The highest 

price level was found to bring the most disutility to respondents. It is also observed that price is 

the single strongest driver in choice probability; moving from a price of 2 euros to 3.5 euros and 

from 2 euros to 5 euros reduces the probability of choosing an option by nearly 24 and 40 

percentage points, respectively. Interestingly, respondents with higher income are substantially 

less price sensitive; the choice probabilities decrease by 16 and 27 percent, respectively. For 

CO2 emission levels, we obtain that higher emissions cause a noticeable drop in preference 

compared to moderate emissions. This effect is less obvious for the respondents who care more 

about sustainability.  



Conclusion and Recommendation 

Our study showed that interaction effects and relaxing the assumption that attributes have 

a linear effect on utility greatly improve model fit. It is therefore imperative that managers decide 

on their target segment.  

Based on our findings, it is found that on average, people value the sustainability level of 

their shared mobility vehicle. It is thus beneficial for companies to perhaps express how green their 

vehicles really are. There are several simple features companies could add to their product to 

achieve this. We suggest a simple sticker on the vehicle with information on the CO2 emission 

level of the vehicle would be effective. This is a cheap way to inform the consumer about the 

sustainability level of a vehicle, leading to greater profits for the eco-friendlier options, as more 

consumers would pick these vehicles. In addition, this is further backed by the fact that the 

willingness to pay of more sustainability-aware individuals is substantially higher than that of non-

sustainability-aware individuals. 

Furthermore, the interaction effects, particularly of price with income and age with walking 

distance, suggest that placing mobility hubs in higher-income or older areas could justify premium 

pricing, as these groups appear less sensitive to price increases and more willing to pay for reduced 

access distance.  Thus, highlighting a potential pool of customers that might normally revert to 

other mobility options. 

Since we have chosen a categorical model, we cannot generalize our findings and infer the 

effect that an attribute would have when its value is outside of our attribute levels. We thus suggest 

that further research could include more levels of attributes. We also would have liked to include 

some other interaction effects. For example, how often people use shared mobility options and 

how this would impact their choice of a sustainable option. Furthermore, running multiple pilots 

would prove beneficial, especially when more interaction effects are included. Lastly, the lack of 

an opt-out option may have biased the estimates. Thus, a larger sample size including an opt-out 

alternative is recommended for more accurate results. 

Taken together, our findings show that understanding preference heterogeneity is essential 

for designing a valued sustainable mobility product. By refining attribute specifications, 

incorporating more complex interactions, and expanding sample size, future work can build on 

these results to support data-driven decision-making in this sector. 
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Appendix 

Appendix 1. Summary output tables of comprehensive analysis 
 
Table 5 Estimates for Multinomial Logit model without interaction effects 

Parameter Estimate Std. error P-value 

b_co2m -0.188 0.084 0.026 

b_co2h -0.441 0.107 0.000 

b_pricem -0.754 0.108 0.000 

b_priceh -1.772 0.199 0.000 

b_wdm -0.183 0.094 0.052 

b_wdh -0.665 0.107 0.000 

b_ttm -0.603 0.090 0.000 

b_tth -1.208 0.137 0.000 

 

Table 6 Log likelihood & Information criteria for MNL with no interaction effects 
Statistic Value 

Log-Likelihood -866.38 

BIC 1790.95 

AIC 1748.77 

 

Table 7 basic MNL with continuous variables 
Parameter Estimate Std. error P-value 

b_co2m -0.200 0.084 0.017 

b_co2h -0.441 0.104 0.000 

b_price -0.592 0.065 0.000 

b_wd -0.002 0.000 0.000 

b_tt -0.122 0.014 0.000 



 

 
Table 8 Log likelihood & Information criteria for basic continuous MNL 
Statistic Value 

Log-Likelihood -869.3 

BIC 1774 

AIC 1748 

 

Table 9 Results for Multinomial Logit model with interaction effects 
Parameter Estimate Std. error P-value 

b_co2m -0.028 0.138 0.841 

b_co2h -0.151 0.176 0.389 

b_pricem -1.033 0.214 0.000 

b_priceh -2.520 0.450 0.000 

b_wdm -0.199 0.131 0.130 

b_wdh -0.691 0.150 0.000 

b_ttm -0.509 0.110 0.000 

b_tth -1.122 0.189 0.000 

b_co2m_green -0.350 0.226 0.121 

b_co2h_green -0.669 0.272 0.015 

b_pricem_wealthy 0.669 0.285 0.019 

b_priceh_wealthy 1.229 0.562 0.029 

b_wdm_ageold -0.235 0.240 0.327 

b_wdh_ageold -0.504 0.292 0.085 

 

 

  



Table 10 Log likelihood & Information criteria for MNL with interaction effects 
Statistic Value 

Log-Likelihood -480.19 

BIC 1054.45 

AIC 988.38 

 

Table 11 Estimates for Multinomial Logit model with interaction effects 
Parameter Estimate Std. error P-value 

b_co2m -0.028 0.138 0.841 

b_co2h -0.151 0.176 0.389 

b_pricem -1.033 0.214 0.000 

b_priceh -2.520 0.450 0.000 

b_wdm -0.199 0.131 0.130 

b_wdh -0.691 0.150 0.000 

b_ttm -0.509 0.110 0.000 

b_tth -1.122 0.189 0.000 

b_co2m_green -0.350 0.226 0.121 

b_co2h_green -0.669 0.272 0.015 

b_pricem_wealthy 0.669 0.285 0.019 

b_priceh_wealthy 1.229 0.562 0.029 

b_wdm_ageold -0.235 0.240 0.327 

b_wdh_ageold -0.504 0.292 0.085 

 

 

 

 

 

  



Table 12 Results for Latent class model 
Parameter Estimate Std. error P-value 

b_co2m_1 -0.430 0.265 0.105 

b_co2h_1 -0.773 0.321 0.016 

b_pricem_1 -0.449 0.228 0.049 

b_priceh_1 -0.865 0.329 0.008 

b_wdm_1 -0.655 0.444 0.140 

b_wdh_1 -1.473 0.903 0.103 

b_ttm_1 -1.256 0.786 0.110 

b_tth_1 -2.498 1.643 0.128 

b_co2m_2 -0.159 0.570 0.780 

b_co2h_2 -0.751 0.391 0.055 

b_pricem_2 -1.381 0.522 0.008 

b_priceh_2 -3.357 1.769 0.058 

b_wdm_2 -0.067 0.228 0.770 

b_wdh_2 -0.513 0.191 0.007 

b_ttm_2 -0.513 0.200 0.114 

b_tth_2 -0.682 0.491 0.165 

delta_1 -1.123 0.817 0.169 

gamma_green_1 -0.115 0.926 0.901 

gamma_ageold_1 0.353 0.915 0.699 

gamma_gender_1 0.758 0.785 0.334 

gamma_educated_1 0.602 0.528 0.254 

gamma_wealthy_1 0.448 0.529 0.397 

delta_2 0.0 0.0 0.0 

gamma_green_2 0.0 0.0 0.0 

gamma_ageold_2 0.0 0.0 0.0 

gamma_gender_2 0.0 0.0 0.0 

gamma_educated_2 0.0 0.0 0.0 

gamma_wealthy_2 0.0 0.0 0.0 



Table 13 Log likelihood & Information criteria for Latent class model 
Statistic Value 

Log-Likelihood -779.91 

BIC 1719.83 

AIC 1603.84 

 

  



Table 14 Results for Mixed logit model 
Parameter Estimate Std. error P-value 

mu_co2m 0.020 0.265 0.105 

Sigma_co2m -0.773 0.321 0.016 

b_pricem_1 -0.449 0.228 0.049 

b_priceh_1 -0.865 0.329 0.008 

b_wdm_1 -0.655 0.444 0.140 

b_wdh_1 -1.473 0.903 0.103 

b_ttm_1 -1.256 0.786 0.110 

b_tth_1 -2.498 1.643 0.128 

b_co2m_2 -0.159 0.570 0.780 

b_co2h_2 -0.751 0.391 0.055 

b_pricem_2 -1.381 0.522 0.008 

b_priceh_2 -3.357 1.769 0.058 

b_wdm_2 -0.067 0.228 0.770 

b_wdh_2 -0.513 0.191 0.007 

b_ttm_2 -0.513 0.200 0.114 

b_tth_2 -0.682 0.491 0.165 

delta_1 -1.123 0.817 0.169 

gamma_green_1 -0.115 0.926 0.901 

gamma_ageold_1 0.353 0.915 0.699 

gamma_gender_1 0.758 0.785 0.334 

gamma_educated_1 0.602 0.528 0.254 

gamma_wealthy_1 0.448 0.529 0.397 

delta_2 0.0 0.0 0.0 

gamma_green_2 0.0 0.0 0.0 

gamma_ageold_2 0.0 0.0 0.0 

gamma_gender_2 0.0 0.0 0.0 

gamma_educated_2 0.0 0.0 0.0 

gamma_wealthy_2 0.0 0.0 0.0 



Table 15 Log likelihood & Information criteria for Mixed Logit model 
Statistic Value 

Log-Likelihood -784.9 

BIC 1686 

AIC 1601 

 

 
Table 16 Continuous Latent Class model estimates 

Parameter Estimate Std. error P-value 

b_co2m_1 -0.397 0.160 0.011 

b_co2h_1 -0.657 0.266 0.013 

b_price_1 -0.279 0.125 0.025 

b_wd_1 -0.004 0.001 0.000 

b_tt_1 -0.282 0.053 0.000 

b_co2m_2 -0.255 0.160 0.111 

b_co2h_2 -0.811 0.215 0.000 

b_price_2 -1.002 0.155 0.000 

b_wd_2 -0.001 0.000 0.001 

b_tt_2 -0.065 0.019 0.001 

delta_1 -1.284 0.727 0.078 

g_green_1 -0.261 0.518 0.614 

g_old_1 0.335 0.430 0.436 

g_gender_1 0.793 0.485 0.102 

g_educated_1 0.579 0.491 0.238 

g_wealthy_1 0.400 0.438 0.361 

delta_2 0.0 0.0 0.0 

g_green_2 0.0 0.0 0.0 

g_old_2 0.0 0.0 0.0 

g_gender_2 0.0 0.0 0.0 

g_educated_2 0.0 0.0 0.0 

g_wealthy_2 0.0 0.0 0.0 



Table 17 Log likelihood & Information criteria for Continuous Latent class model 

Statistic Value 

Log-Likelihood -783.89 

BIC 1684 

AIC 1599 

 

Table 18 Continuous mixed Logit model estimates 

Parameter Estimate Std. error P-value 

mu_co2m -0.379 0.141 0.007 

sigma_co2m 0.096 0.126 0.447 

mu_co2h -1.034 0.221 0.000 

sigma_co2h 0.963 0.189 0.000 

mu_price -1.101 0.142 0.000 

sigma_price 1.054 0.146 0.000 

mu_wd -0.003 0.001 0.000 

sigma_wd 0.004 0.001 0.000 

mu_tt -0.237 0.032 0.000 

sigma_tt -0.226 0.028 0.000 

 

Table 19 Log likelihood & Information criteria for Continuous Mixed Logit model 

Statistic Value 

Log-Likelihood -725.11 

BIC 1522 

AIC 1470 

  



Table 20  Estimates for continuous Multinomial Logit model with interaction effects 

Parameter Estimate Std. error P-value 

b_co2m 0.002 0.097 0.983 

b_co2h -0.131 0.122 0.284 

b_price -0.709 0.095 0.000 

b_wd -0.002 0.000 0.000 

b_tt -0.125 0.014 0.000 

b_co2m_green -0.450 0.166 0.007 

b_co2h_green -0.711 0.204 0.000 

b_price_wealthy 0.237 0.135 0.079 

b_wd_age -0.000 0.001 0.748 

 

 

Table 21 Log likelihood & Information criteria for Continuous MNL with interaction effects 

Statistic Value 

Log-Likelihood -855.23 

BIC 1775 

AIC 1728 

  



Appendix 2. Survey design 

 

  



Choice tasks: 

1) 

 

2) 

 
3) 

 
  



4) 

 
5) 

 
6) 

 
  



7) 

 
8) 

 
9) 

 
  



10) 

 
11) 

 
12) 

 
  



13) 

 
14) 

 
15) 

 
  



16) 

 
17) 

 
18) 

 
  



19) 

 
20) 

 
21) 

 
  



22) 

 
23) 

 
24) 

 
  



Each respondent was shown 12 Choice tasks at random after which they were asked the 
following demographic questions: 

 
 



 

Appendix 3. Syntax used to generate the generate the various models 
Code MNL basic with categorical variables only 
### Step 1: Clear memory 
rm(list = ls()) 
 
### Step 2: Set working directory for R initialization 
setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 
 
### Step 3: Load Apollo library 
library(apollo) 
 



### Step 4: Initialize Apollo code 
apollo_initialise() 
 
### Step 5: Set core controls 
###     ATTENTION: Your inputs must be enclosed in quotes like "this" 
apollo_control = list( 
  # USER ACTION: Specify model name 
  ##    Note: Change the model name for every model that you run 
  modelName       = "MNL_basic", 
  # USER ACTION: Provide model description 
  ##    Note: Change the model description to reflect the current model 
  modelDescr      = "basic model", 
  # USER ACTION: Specify the column with the respondent id 
  indivID         = "peep_ID", 
  # USER ACTION: Set path to the folder on your PC where the model results 
will be stored 
  ##    Note: Use the "outputs" folder that was created by the pre-
processing syntax 
  outputDirectory ="outputs" 
) 
 
### Step 6: Load data 
# Set path to the folder on your PC where the dataset is stored 
path_dataset = 
paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies_final.csv") 
 
# Load dataset into global environment 
database = read.csv(path_dataset, header=TRUE) 
 
### Step 7: Initialize all parameters that needs to be estimated in your 
MNL model 
# USER ACTION: The parameters for the attribute "Effectiveness" are 
defined. Please, 
#              complete the list with parameters that need to be 
estimated. Provide 
#              names for each parameter following by assigning a starting 
value. 
apollo_beta=c(b_co2m = 0, 
              b_co2h = 0, 
              b_pricem = 0, 
              b_priceh = 0, 
              b_wdm = 0, 
              b_wdh = 0, 
              b_ttm = 0, 
              b_tth = 0) 
              #'COMPLETE THE LIST HERE') 
 
### Step 8: Define which parameters (as initialised above) should kept 
fixed during estimation (in quotes); if none, keep empty 
apollo_fixed = c() 
 
### Step 9: Checkpoint for model inputs 
apollo_inputs = apollo_validateInputs() 
 



### Step 10: Define model and likelihood function 
apollo_probabilities=function(apollo_beta, apollo_inputs, 
functionality="estimate"){ 
     
  ### Attach dataset inputs and detach after function exit 
  apollo_attach(apollo_beta, apollo_inputs) 
  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 
 
  ### Create list of choice probabilities P 
  P = list() 
   
  ### List of utility functions: these must use the same names as in 
mnl_settings (see below), order is irrelevant 
  V = list() 
  # USER ACTION: Define utility function for alternative 1 
  V[["ALT1"]] = b_co2m * Var12.1 + b_co2h * Var13.1 + b_pricem * Var22.1 + 
b_priceh * Var23.1 +  
    b_wdm * Var32.1 + b_wdh * Var33.1 + b_ttm * Var42.1 + b_tth * Var43.1  
 
  # USER ACTION: Define utility function for alternative 2 
  V[["ALT2"]] = b_co2m * Var12.2 + b_co2h * Var13.2 + b_pricem * Var22.2 + 
b_priceh * Var23.2 +  
    b_wdm * Var32.2 + b_wdh * Var33.2 + b_ttm * Var42.2 + b_tth * Var43.2 
   
  ### Define settings for MNL model component 
  mnl_settings = list( 
    # USER ACTION: Attach utility functions to the alternatives in your 
dataset 
    alternatives  = c(ALT1=1, ALT2=2), 
    # USER ACTION: Define which alternatives are "available" in each 
choice task; in our study, all alternatives are "available" 
    avail         = list(ALT1=1, ALT2=1), 
    # USER ACTION: Specify the column containing the chosen alternative; 
beware, no dummies are used (!) 
    choiceVar     = choice, 
    # USER ACTION: Attach list of utility functions 
    utilities     = V 
  ) 
   
  ### Compute choice probabilities using MNL model 
  P[["model"]] = apollo_mnl(mnl_settings, functionality) # 
functionality="estimate" as the parameters will be updated for estimating 
the MNL model 
   
  ### Take product across observations for same individual (i.e., 
considering the panel structure of the data) 
  P = apollo_panelProd(P, apollo_inputs, functionality) 
   
  ### Prepare and return outputs of function 
  P = apollo_prepareProb(P, apollo_inputs, functionality) 
  return(P) 
} 
 
### Step 11: Model estimation 



model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, 
apollo_inputs) 
 
### Step 12: Print model output with two-sided p-values 
#### Note: if one-sided p-values are needed, set "printPVal=1" (p-values 
are not reported if set to "0") 
modelOutput_setting=list(printPVal=2) 
apollo_modelOutput(model, modelOutput_setting) 
 
### Save model output with two-sided p-values 
apollo_saveOutput(model, modelOutput_setting) 
 
 
Code MNL with interactions with categorical variables only 
### Step 1: Clear memory 
rm(list = ls()) 
 
### Step 2: Set working directory for R initialization 
setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 
 
### Step 3: Load Apollo library 
library(apollo) 
 
### Step 4: Initialise Apollo code 
apollo_initialise() 
 
### Step 5: Set core controls 
###     ATTENTION: Your inputs must be enclosed in quotes like "this" 
apollo_control = list( 
  # USER ACTION: Specify model name 
  ##    Note: Change the model name for every model that you run 
  modelName       = "MNL_I", 
  # USER ACTION: Provide model description 
  ##    Note: Change the model description to reflect the current model 
  modelDescr      = "MNL with interaction effects", 
  # USER ACTION: Specify the column with the respondent id 
  indivID         = "peep_ID", 
  # USER ACTION: Set path to the folder on your PC where the model results 
will be stored 
  ##    Note: Use the "outputs" folder that was created by the pre-
processing syntax 
  outputDirectory = "outputs" 
) 
 
### Step 6: Load data 
# Set path to the folder on your PC where the dataset is stored 
path_dataset = paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies-
2.csv") 
 
# Load dataset into global environment 
database = read.csv(path_dataset, header=TRUE) 
 



### Step 7: Initialize all parameters that needs to be estimated in your 
MNL model 
# USER ACTION: The parameters for the attribute "Effectiveness" are 
defined. Please, 
#              complete the list with parameters that need to be 
estimated. Provide 
#              names for each parameter following by assigning a starting 
value. 
apollo_beta=c(b_co2m = 0, 
              b_co2h = 0, 
              b_pricem = 0, 
              b_priceh = 0, 
              b_wdm = 0, 
              b_wdh = 0, 
              b_ttm = 0, 
              b_tth = 0, 
              b_co2m_treehugger = 0, 
              b_co2h_treehugger = 0, 
              b_pricem_rich = 0, 
              b_priceh_rich = 0, 
              b_wdm_age = 0, 
              b_wdh_age = 0) 
 
### Step 8: Define which parameters (as initialized above) should kept 
fixed during estimation (in quotes); if none, keep empty 
apollo_fixed = c() 
 
### Step 9: Checkpoint for model inputs 
apollo_inputs = apollo_validateInputs() 
 
### Step 10: Define model and likelihood function 
apollo_probabilities=function(apollo_beta, apollo_inputs, 
functionality="estimate"){ 
     
  ### Attach dataset inputs and detach after function exit 
  apollo_attach(apollo_beta, apollo_inputs) 
  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 
 
  ### Create list of choice probabilities P 
  P = list() 
   
  ### List of utility functions: these must use the same names as in 
mnl_settings (see below), order is irrelevant 
  V = list() 
  # USER ACTION: Define utility function for alternative 1 
  V[["ALT1"]]  = (b_co2m * Var12.1 + b_co2h * Var13.1 + b_pricem * Var22.1 
+ b_priceh * Var23.1 + b_wdm * Var32.1 + b_wdh * Var33.1 + b_ttm * Var42.1 
+ b_tth * Var43.1 + 
                  b_co2m_treehugger * d26 * Var12.1 + b_co2h_treehugger * 
d26 * Var13.1 + b_pricem_rich * d30 * Var22.1 + b_priceh_rich * d30 * 
Var23.1 + 
                  b_wdm_age * d27 * Var32.1 + b_wdh_age * d27 * Var33.1) 
 
  # USER ACTION: Define utility function for alternative 2 



  V[["ALT2"]]  =(b_co2m * Var12.2 + b_co2h * Var13.2 + b_pricem * Var22.2 
+ b_priceh * Var23.2 + b_wdm * Var32.2 + b_wdh * Var33.2 + b_ttm * Var42.2 
+ b_tth * Var43.2 + 
                   b_co2m_treehugger * d26 * Var12.2 + b_co2h_treehugger * 
d26 * Var13.2 + b_pricem_rich * d30 * Var22.2 + b_priceh_rich * d30 * 
Var23.2 + 
                   b_wdm_age * d27 * Var32.2 + b_wdh_age * d27 * Var33.2) 
   
  ### Define settings for MNL model component 
  mnl_settings = list( 
    # USER ACTION: Attach utility functions to the alternatives in your 
dataset 
    alternatives  = c(ALT1=1, ALT2=2), 
    # USER ACTION: Define which alternatives are "available" in each 
choice task; in our study, all alternatives are "available" 
    avail         = list(ALT1=1, ALT2=1), 
    # USER ACTION: Specify the column containing the chosen alternative; 
beware, no dummies are used (!) 
    choiceVar     = choice, 
    # USER ACTION: Attach list of utility functions 
    utilities     = V 
  ) 
   
  ### Compute choice probabilities using MNL model 
  P[["model"]] = apollo_mnl(mnl_settings, functionality) # 
functionality="estimate" as the parameters will be updated for estimating 
the MNL model 
   
  ### Take product across observations for same individual (i.e., 
considering the panel structure of the data) 
  P = apollo_panelProd(P, apollo_inputs, functionality) 
   
  ### Prepare and return outputs of function 
  P = apollo_prepareProb(P, apollo_inputs, functionality) 
  return(P) 
} 
 
### Step 11: Model estimation 
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, 
apollo_inputs) 
 
### Step 12: Print model output with two-sided p-values 
#### Note: if one-sided p-values are needed, set "printPVal=1" (p-values 
are not reported if set to "0") 
modelOutput_setting=list(printPVal=2) 
apollo_modelOutput(model, modelOutput_setting) 
 
### Save model output with two-sided p-values 
apollo_saveOutput(model, modelOutput_setting) 

 
 
Code Latent Class with categorical variables only 
### Step 1: Clear memory 



rm(list = ls()) 
 
### Step 2: Set working directory for R initialization 
setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 
 
### Step 3: Load Apollo library 
library(apollo) 
 
### Step 4: Initialise Apollo code 
apollo_initialise() 
 
### Step 5: Set core controls 
###     ATTENTION: Your inputs must be enclosed in quotes like "this" 
apollo_control = list( 
  # USER ACTION: Specify model name 
  ##    Note: Change the model name for every model that you run 
  modelName       = "lc_model", 
  # USER ACTION: Provide model description 
  ##    Note: Change the model description to reflect the current model 
  modelDescr      = "this estimates lc", 
  # USER ACTION: Specify the column with the respondent id 
  indivID         = "peep_ID", 
  # Define number of cores used during estimation (used to speed up 
estimation time) 
  nCores          = 5, 
  # Define seed used for any random number generation 
  seed            = 100, 
  # USER ACTION: Set path to the folder on your PC where the model results 
will be stored 
  ##    Note: Use the "outputs" folder that was created by the pre-
processing syntax 
  outputDirectory = 
paste(getwd(),'outputs',"practicum_lcmodel_3class_covar",sep=.Platform$fil
e.sep) 
) 
 
### Step 6: Load data 
# Set path to the folder on your PC where the dataset is stored 
path_data = 
paste(getwd(),"data_with_dummies_final.csv",sep=.Platform$file.sep) 
# Load dataset into global environment 
database = read.csv(path_data, header=TRUE) 
 
### Step 7: Initialise all parameters that needs to be estimated in your 
MNL model 
# USER ACTION: Define the (1) class-specific and (2) class membership 
parameters 
#              followed by assigning a starting value. The class-specific 
#              alternative specific constant for the opt-out option and 
the 
#              constants for the class membership models are already 
defined. 
#              Please, complete the list with the parameters that are 
missing. 



#              Provide names for each parameter following by assigning a 
#              starting value. 
apollo_beta=c(# Class 1 
  b_co2m_1 = -0.1, 
  b_co2h_1 = 0, 
  b_pricem_1 = 0, 
  b_priceh_1 = 0, 
  b_wdm_1 = 0, 
  b_wdh_1 = 0, 
  b_ttm_1 = 0, 
  b_tth_1 = 0, 
   
  # Class 2 
  b_co2m_2 = 0.1, 
  b_co2h_2 = 0, 
  b_pricem_2 = 0, 
  b_priceh_2 = 0, 
  b_wdm_2 = 0, 
  b_wdh_2 = 0, 
  b_ttm_2 = 0, 
  b_tth_2 = 0, 
   
  # Class membership - class 1 
  delta_1        = -0.1, 
  g_treehugger_1 = 0, 
  g_ageold_1 = 0, 
  g_gender_1 = 0, 
  g_educated_1 = 0, 
  g_rich_1 = 0, 
  # Class membership - class 2 
  delta_2        = 0, 
  g_treehugger_2 = 0, 
  g_ageold_2 = 0, 
  g_gender_2 = 0, 
  g_educated_2 = 0, 
  g_rich_2 = 0) 
 
 
### Step 8 
##  USER ACTION: Complete the list with parameters (as initialised above) 
that 
##               should be kept fixed during estimation (in quotes) 
apollo_fixed = c("delta_2", "g_treehugger_2", "g_ageold_2", "g_gender_2", 
"g_educated_2", "g_rich_2") 
 
### Step 9: Define class membership model 
apollo_lcPars=function(apollo_beta, apollo_inputs){ 
  lcpars = list() 
  ## USER ACTION: Complete the empty lists by specifying the missing 
class-specific parameters 
  ##              which are needed for the class-specific utility 
functions 
   
  lcpars[["b_co2m"]] = list(b_co2m_1, b_co2m_2) 



  lcpars[["b_co2h"]] = list(b_co2h_1, b_co2h_2) 
  lcpars[["b_pricem"]] = list(b_pricem_1, b_pricem_2) 
  lcpars[["b_priceh"]] = list(b_priceh_1, b_priceh_2) 
  lcpars[["b_wdm"]] = list(b_wdm_1, b_wdm_2) 
  lcpars[["b_wdh"]] = list(b_wdh_1, b_wdh_2) 
  lcpars[["b_ttm"]] = list(b_ttm_1, b_ttm_2) 
  lcpars[["b_tth"]] = list(b_tth_1, b_tth_2) 
   
   
  ## List of class-membership functions: 
  ##  These must use the same names as in classAlloc_settings (see below), 
order is irrelevant 
  V=list() 
  # USER ACTION: Define class-membership function for class 1 
  V[["class_1"]] = delta_1 + g_treehugger_1 * d26 + g_ageold_1 * d27 + 
g_gender_1 * d28 + g_educated_1 * d29 + g_rich_1 * d30 
   
  # USER ACTION: Define class-membership functions for class 2 
  V[["class_2"]] = delta_2 + g_treehugger_2 * d26 + g_ageold_2 * d27 + 
g_gender_2 * d28+ g_educated_2 * d29 + g_rich_2 * d30 
   
   
  ## Define settings for class-membership model 
  classAlloc_settings = list( 
    # USER ACTION: Attach class-membership functions to the respective 
classes 
    classes      = c(class_1=1, class_2=2), 
    # USER ACTION: Define which classes are "available" in our study, all 
classes are "available" 
    avail        = 1, 
    # USER ACTION: Attach list of class-membership functions 
    utilities    = V 
  ) 
   
  lcpars[["pi_values"]] = apollo_classAlloc(classAlloc_settings) 
  return(lcpars) 
} 
 
### Step 10: Checkpoint for model inputs 
apollo_inputs = apollo_validateInputs() 
 
### Step 11: Define model and likelihood function 
apollo_probabilities=function(apollo_beta, apollo_inputs, 
functionality="estimate"){ 
   
  ### Attach inputs and detach after function exit 
  apollo_attach(apollo_beta, apollo_inputs) 
  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 
   
  ### Create list of choice probabilities P 
  P = list() 
   
  ### Define settings for MNL model component that are generic across 
classes 



  mnl_settings = list( 
    # USER ACTION: Attach utility functions to the alternatives in your 
dataset 
    alternatives  = c(ALT1=1, ALT2=2), 
    # USER ACTION: Define which alternatives are "available" in each 
choice task; in our study, all alternatives are "available" 
    avail         = list(ALT1=1, ALT2=1), 
    # USER ACTION: Specify the column containing the chosen alternative; 
beware, no dummies are used (!) 
    choiceVar     = choice 
  ) 
   
  ### List of utility functions for each latent class: these must use the 
same names as in mnl_settings (see above), order is irrelevant 
  # USER ACTION: Set number of latent classes you are estimating in the 
model 
  ##       Note: You can call class-specific parameters by 
NAME_PARAM[[s]]; see example in ALT3 for the class-specific 
  ##             alternative specific constant 
  for(s in 1:2){ 
    V=list() 
    # USER ACTION: Define utility function for alternative 1 for class "s" 
    V[["ALT1"]] = b_co2m[[s]] * Var12.1 + b_co2h[[s]] * Var13.1 + 
b_pricem[[s]] * Var22.1 + b_priceh[[s]] * Var23.1 +  
      b_ttm[[s]] * Var42.1 + b_tth[[s]] * Var43.1 + b_wdm[[s]] * Var32.1 + 
b_wdh[[s]] * Var33.1 
     
    # USER ACTION: Define utility function for alternative 2 for class "s" 
    V[["ALT2"]] = b_co2m[[s]] * Var12.2 + b_co2h[[s]] * Var13.2 + 
b_pricem[[s]] * Var22.2 + b_priceh[[s]] * Var23.2 +  
      b_ttm[[s]] * Var42.2 + b_tth[[s]] * Var43.2 + b_wdm[[s]] * Var32.2 + 
b_wdh[[s]] * Var33.2 
     
     
    mnl_settings$utilities = V 
    mnl_settings$componentName = paste0("Class_",s) 
     
    ### Compute within-class choice probabilities using MNL model 
    P[[paste0("Class_",s)]] = apollo_mnl(mnl_settings, functionality) 
     
    ### Take product across observations for same individual (i.e., 
considering the panel structure of the data) 
    P[[paste0("Class_",s)]] = apollo_panelProd(P[[paste0("Class_",s)]], 
apollo_inputs ,functionality) 
  } 
   
  ### Compute latent class model probabilities 
  lc_settings   = list(inClassProb = P, classProb=pi_values) 
  P[["model"]] = apollo_lc(lc_settings, apollo_inputs, functionality) 
   
  ### Prepare and return outputs of function 
  P = apollo_prepareProb(P, apollo_inputs, functionality) 
  return(P) 
} 



 
### Step 12: Searching for starting value (recommended to ensure model 
convergence!) 
apollo_beta = apollo_searchStart(apollo_beta, 
                                 apollo_fixed, 
                                 apollo_probabilities, 
                                 apollo_inputs, 
                                 searchStart_settings=list(nCandidates=2)) 
 
### Step 13: Model estimation 
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, 
apollo_inputs) 
 
### Step 14: Print model output with two-sided p-values 
### Note: if one-sided p-values are needed, set "printPVal=1" (p-values 
are not reported if set to "0") 
modelOutput_setting=list(printPVal=2) 
apollo_modelOutput(model, modelOutput_setting) 
 
### Save model output with two-sided p-values 
apollo_saveOutput(model, modelOutput_setting) 
 
 
Code Mixed Logit with categorical variables only 
### Step 1: Clear memory 
rm(list = ls()) 
 
### Step 2: Set working directory for R initialization 
setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 
 
### Step 3: Load Apollo library 
library(apollo) 
 
### Step 4: Initialise Apollo code 
apollo_initialise() 
 
### Step 5: Set core controls 
###     ATTENTION: Your inputs must be enclosed in quotes like "this" 
apollo_control = list( 
  # USER ACTION: Specify model name 
  ##    Note: Change the model name for every model that you run 
  modelName       = "mixedLogitModel", 
  # USER ACTION: Provide model description 
  ##    Note: Change the model description to reflect the current model 
  modelDescr      = "mixing", 
  # USER ACTION: Specify the column with the respondent id 
  indivID         = "peep_ID", 
  # USER ACTION: Set logical variable to activate estimation of random 
parameters 
  mixing          = TRUE, 
  # Define number of cores used during estimation (used to speed up 
estimation time) 
  nCores          = 5, 



  # USER ACTION: Set path to the folder on your PC where the model results 
will be stored 
  ##    Note: Use the "outputs" folder that was created by the pre-
processing syntax 
  outputDirectory = "outputs" 
) 
 
### Step 6: Load data 
# Set path to directory on your PC where the dataset is stored 
path_data = 
paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies_final.csv") 
# Load dataset into global environment 
database = read.csv(path_data, header=TRUE) 
database <- database[!is.na(database$choice), ] 
 
### Step 7: Initialise all parameters that needs to be estimated in your 
Mixed Logit model 
# USER ACTION: Define the (1) mu parameters that estimate the sample mean, 
and 
#                         (2) sigma parameters that estimate the sample 
distribution 
#              Please, complete the list with the parameters that are 
missing. 
#              Provide names for each parameter following by assigning a 
#              starting value. 
apollo_beta=c( 
  mu_co2m = 0, 
  sigma_co2m = 0, 
  mu_co2h = 0, 
  sigma_co2h = 0, 
  mu_pricem = 0, 
  sigma_pricem = 0, 
  mu_priceh = 0, 
  sigma_priceh = 0, 
  mu_wdm = 0, 
  sigma_wdm = 0, 
  mu_wdh = 0, 
  sigma_wdh = 0, 
  mu_ttm = 0, 
  sigma_ttm = 0, 
  mu_tth = 0, 
  sigma_tth = 0) 
### Step 8: 
##  USER ACTION: Complete the list with parameters (as initialised above) 
that 
##               should be kept fixed during estimation (in quotes); if 
none, keep empty 
apollo_fixed = c() 
 
### Step 9: Set parameters for generating draws 
# USER ACTION: Define the number of one random variable for each sigma in 
apollo_beta 
# Use the command line interNormDraws 
 



apollo_draws = list( 
  interDrawsType = "mlhs", 
  interNDraws    = 200, 
  interUnifDraws = c(), 
  interNormDraws = c("inter_1","inter_2","inter_3","inter_4","inter_5", 
"inter_6", "inter_7", "inter_8"), 
  intraDrawsType = "mlhs", 
  intraNDraws    = 0, 
  intraUnifDraws = c(), 
  intraNormDraws = c() 
) 
 
### Step 10: Create random parameters 
# USER ACTION: Write every random coefficient function 
# If necessary check the lecture slides 
apollo_randCoeff = function(apollo_beta, apollo_inputs){ 
  randcoeff = list() 
   
  randcoeff[["b_co2m"]] = mu_co2m + sigma_co2m * inter_1 
  randcoeff[["b_co2h"]] = mu_co2h + sigma_co2h * inter_2 
  randcoeff[["b_pricem"]] = mu_pricem + sigma_pricem* inter_3 
  randcoeff[["b_priceh"]] = mu_priceh + sigma_priceh* inter_4 
  randcoeff[["b_wdm"]] = mu_wdm + sigma_wdm* inter_5 
  randcoeff[["b_wdh"]] = mu_wdh + sigma_wdh* inter_6 
  randcoeff[["b_ttm"]] = mu_ttm + sigma_ttm* inter_7 
  randcoeff[["b_tth"]] = mu_tth + sigma_tth* inter_8 
   
  return(randcoeff) 
} 
 
### Step 11: Checkpoint for model inputs 
apollo_inputs = apollo_validateInputs() 
 
### Step 12: Define model and likelihood function 
apollo_probabilities=function(apollo_beta, apollo_inputs, 
functionality="estimate"){ 
   
  ### Attach dataset inputs and detach after function exit 
  apollo_attach(apollo_beta, apollo_inputs) 
  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 
   
  ### Create list of choice probabilities P 
  P = list() 
   
  ### List of utility functions: these must use the same names as in 
mnl_settings (see below), order is irrelevant 
  V = list() 
   
  # USER ACTION: Define utility function for alternative 1 
  # Code "effectiveness" and "risk false negative" attributes as numerical 
variables 
  V[["ALT1"]]  = (b_co2m * Var12.1 + b_co2h * Var13.1 + b_pricem * Var22.1 
+ b_priceh * Var23.1 + b_wdm * Var32.1  
                  + b_wdh * Var33.1 + b_ttm * Var42.1 + b_tth * Var43.1 ) 



   
  # USER ACTION: Define utility function for alternative 2 
  # Code "effectiveness" and "risk false negative" attributes as numerical 
variables 
  V[["ALT2"]]  = (b_co2m * Var12.2 + b_co2h * Var13.2 + b_pricem * Var22.2 
+ b_priceh * Var23.2 + b_wdm * Var32.2  
                  + b_wdh * Var33.2 + b_ttm * Var42.2 + b_tth * Var43.2 ) 
   
   
  ### Define settings for MNL model component 
  mnl_settings = list( 
    # USER ACTION: Attach utility function to the choice alternative in 
your dataset 
    alternatives  = c(ALT1=1, ALT2=2), 
    # USER ACTION: Define which alternatives are "available" in each 
choice task 
    #              In our study, all alternatives are "available" 
    avail         = 1, 
    # USER ACTION: Specify the column containing the chosen alternative 
    choiceVar     = choice, 
    # USER ACTION: Attach list of utility functions 
    utilities     = V 
  ) 
   
  ### Compute choice probabilities using MNL model 
  #### functionality="estimate" as the parameters will be updated for 
estimating the MNL model 
  P[["model"]] = apollo_mnl(mnl_settings, functionality) 
   
  ### Take product across observations for same individual 
  ### (i.e., considering the panel structure of the data) 
  P = apollo_panelProd(P, apollo_inputs, functionality) 
   
  ## Average across inter-individual draws 
  P = apollo_avgInterDraws(P, apollo_inputs, functionality) 
   
  ### Prepare and return outputs of function 
  P = apollo_prepareProb(P, apollo_inputs, functionality) 
  return(P) 
} 
 
### Step 13: Model estimation 
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, 
apollo_inputs) 
 
### Step 14: Print model output with two-sided p-values 
#### Note: if one-sided p-values are needed, set "printPVal=1" (p-values 
are not reported if set to "0") 
modelOutput_setting=list(printPVal=2) 
apollo_modelOutput(model, modelOutput_setting) 
 
### Save model output with two-sided p-values 
apollo_saveOutput(model, modelOutput_setting) 
 



### Step 15: Estimate individual coefficients conditional on choice 
sequence 
conditionals = apollo_conditionals(model, 
                                   apollo_probabilities, 
                                   apollo_inputs) 
 
# Set path to directory on your PC where the conditionals will be stored 
path_cond = 
paste0(apollo_control$outputDirectory,sep=.Platform$file.sep,"conditionals
.RDS") 
### Save conditionals 
saveRDS(conditionals, file = path_cond) 
 
 
 
 
Code MNL basic with continuous variables 
### Step 1: Clear memory 
rm(list = ls()) 
 
### Step 2: Set working directory for R initialization 
setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 
 
### Step 3: Load Apollo library 
library(apollo) 
 
### Step 4: Initialize Apollo code 
apollo_initialise() 
 
### Step 5: Set core controls 
###     ATTENTION: Your inputs must be enclosed in quotes like "this" 
apollo_control = list( 
  # USER ACTION: Specify model name 
  ##    Note: Change the model name for every model that you run 
  modelName       = "MNL_basic", 
  # USER ACTION: Provide model description 
  ##    Note: Change the model description to reflect the current model 
  modelDescr      = "basic model", 
  # USER ACTION: Specify the column with the respondent id 
  indivID         = "peep_ID", 
  # USER ACTION: Set path to the folder on your PC where the model results 
will be stored 
  ##    Note: Use the "outputs" folder that was created by the pre-
processing syntax 
  outputDirectory ="outputs" 
) 
 
### Step 6: Load data 
# Set path to the folder on your PC where the dataset is stored 
path_dataset = paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies-
2.csv") 
 
# Load dataset into global environment 



database = read.csv(path_dataset, header=TRUE) 
 
### Step 7: Initialize all parameters that needs to be estimated in your 
MNL model 
# USER ACTION: The parameters for the attribute "Effectiveness" are 
defined. Please, 
#              complete the list with parameters that need to be 
estimated. Provide 
#              names for each parameter following by assigning a starting 
value. 
apollo_beta=c(b_co2m = 0, 
              b_co2h = 0, 
              b_price = 0, 
              b_wd = 0, 
              b_tt = 0) 
              #'COMPLETE THE LIST HERE') 
 
### Step 8: Define which parameters (as initialised above) should kept 
fixed during estimation (in quotes); if none, keep empty 
apollo_fixed = c() 
 
### Step 9: Checkpoint for model inputs 
apollo_inputs = apollo_validateInputs() 
 
### Step 10: Define model and likelihood function 
apollo_probabilities=function(apollo_beta, apollo_inputs, 
functionality="estimate"){ 
     
  ### Attach dataset inputs and detach after function exit 
  apollo_attach(apollo_beta, apollo_inputs) 
  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 
 
  ### Create list of choice probabilities P 
  P = list() 
   
  ### List of utility functions: these must use the same names as in 
mnl_settings (see below), order is irrelevant 
  V = list() 
  # USER ACTION: Define utility function for alternative 1 
  V[["ALT1"]] = b_co2m * Var12.1 + b_co2h * Var13.1 + b_price * price1 + 
b_wd * wd1 + b_tt * tt1 
 
  # USER ACTION: Define utility function for alternative 2 
  V[["ALT2"]] = b_co2m * Var12.2 + b_co2h * Var13.2 + b_price * price2 + 
b_wd * wd2 + b_tt * tt2 
   
  ### Define settings for MNL model component 
  mnl_settings = list( 
    # USER ACTION: Attach utility functions to the alternatives in your 
dataset 
    alternatives  = c(ALT1=1, ALT2=2), 
    # USER ACTION: Define which alternatives are "available" in each 
choice task; in our study, all alternatives are "available" 
    avail         = list(ALT1=1, ALT2=1), 



    # USER ACTION: Specify the column containing the chosen alternative; 
beware, no dummies are used (!) 
    choiceVar     = choice, 
    # USER ACTION: Attach list of utility functions 
    utilities     = V 
  ) 
   
  ### Compute choice probabilities using MNL model 
  P[["model"]] = apollo_mnl(mnl_settings, functionality) # 
functionality="estimate" as the parameters will be updated for estimating 
the MNL model 
   
  ### Take product across observations for same individual (i.e., 
considering the panel structure of the data) 
  P = apollo_panelProd(P, apollo_inputs, functionality) 
   
  ### Prepare and return outputs of function 
  P = apollo_prepareProb(P, apollo_inputs, functionality) 
  return(P) 
} 
 
### Step 11: Model estimation 
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, 
apollo_inputs) 
 
### Step 12: Print model output with two-sided p-values 
#### Note: if one-sided p-values are needed, set "printPVal=1" (p-values 
are not reported if set to "0") 
modelOutput_setting=list(printPVal=2) 
apollo_modelOutput(model, modelOutput_setting) 
 
### Save model output with two-sided p-values 
apollo_saveOutput(model, modelOutput_setting) 
 

 

Code MNL with interactions with continuous variables 
### Step 1: Clear memory 
rm(list = ls()) 
 
### Step 2: Set working directory for R initialization 
setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 
 
### Step 3: Load Apollo library 
library(apollo) 
 
### Step 4: Initialise Apollo code 
apollo_initialise() 
 
### Step 5: Set core controls 
###     ATTENTION: Your inputs must be enclosed in quotes like "this" 
apollo_control = list( 
  # USER ACTION: Specify model name 



  ##    Note: Change the model name for every model that you run 
  modelName       = "MNL_I", 
  # USER ACTION: Provide model description 
  ##    Note: Change the model description to reflect the current model 
  modelDescr      = "MNL with interaction effects", 
  # USER ACTION: Specify the column with the respondent id 
  indivID         = "peep_ID", 
  # USER ACTION: Set path to the folder on your PC where the model results 
will be stored 
  ##    Note: Use the "outputs" folder that was created by the pre-
processing syntax 
  outputDirectory = "outputs" 
) 
 
### Step 6: Load data 
# Set path to the folder on your PC where the dataset is stored 
path_dataset = 
paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies_final.csv") 
 
# Load dataset into global environment 
database = read.csv(path_dataset, header=TRUE) 
 
### Step 7: Initialize all parameters that needs to be estimated in your 
MNL model 
# USER ACTION: The parameters for the attribute "Effectiveness" are 
defined. Please, 
#              complete the list with parameters that need to be 
estimated. Provide 
#              names for each parameter following by assigning a starting 
value. 
apollo_beta=c(b_co2m = 0, 
              b_co2h = 0, 
              b_price = 0, 
              b_wd = 0, 
              b_tt = 0, 
              b_co2m_treehugger = 0, 
              b_co2h_treehugger = 0, 
              b_price_rich = 0, 
              b_wd_age = 0) 
 
### Step 8: Define which parameters (as initialized above) should kept 
fixed during estimation (in quotes); if none, keep empty 
apollo_fixed = c() 
 
### Step 9: Checkpoint for model inputs 
apollo_inputs = apollo_validateInputs() 
 
### Step 10: Define model and likelihood function 
apollo_probabilities=function(apollo_beta, apollo_inputs, 
functionality="estimate"){ 
     
  ### Attach dataset inputs and detach after function exit 
  apollo_attach(apollo_beta, apollo_inputs) 
  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 



 
  ### Create list of choice probabilities P 
  P = list() 
   
  ### List of utility functions: these must use the same names as in 
mnl_settings (see below), order is irrelevant 
  V = list() 
  # USER ACTION: Define utility function for alternative 1 
  V[["ALT1"]]  = (b_co2m * Var12.1 + b_co2h * Var13.1 + b_price * price1 + 
b_wd * wd1 + b_tt * tt1 + 
                  b_co2m_treehugger * d26 * Var12.1 + b_co2h_treehugger * 
d26 * Var13.1 + b_price_rich * d30 * price1 + 
                  b_wd_age * d27 * wd1) 
 
  # USER ACTION: Define utility function for alternative 2 
  V[["ALT2"]]  =(b_co2m * Var12.2 + b_co2h * Var13.2 + b_price * price2 + 
b_wd * wd2 + b_tt * tt2 + 
                   b_co2m_treehugger * d26 * Var12.2 + b_co2h_treehugger * 
d26 * Var13.2 + b_price_rich * d30 * price2 + 
                   b_wd_age * d27 * wd2) 
   
  ### Define settings for MNL model component 
  mnl_settings = list( 
    # USER ACTION: Attach utility functions to the alternatives in your 
dataset 
    alternatives  = c(ALT1=1, ALT2=2), 
    # USER ACTION: Define which alternatives are "available" in each 
choice task; in our study, all alternatives are "available" 
    avail         = list(ALT1=1, ALT2=1), 
    # USER ACTION: Specify the column containing the chosen alternative; 
beware, no dummies are used (!) 
    choiceVar     = choice, 
    # USER ACTION: Attach list of utility functions 
    utilities     = V 
  ) 
   
  ### Compute choice probabilities using MNL model 
  P[["model"]] = apollo_mnl(mnl_settings, functionality) # 
functionality="estimate" as the parameters will be updated for estimating 
the MNL model 
   
  ### Take product across observations for same individual (i.e., 
considering the panel structure of the data) 
  P = apollo_panelProd(P, apollo_inputs, functionality) 
   
  ### Prepare and return outputs of function 
  P = apollo_prepareProb(P, apollo_inputs, functionality) 
  return(P) 
} 
 
### Step 11: Model estimation 
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, 
apollo_inputs) 
 



### Step 12: Print model output with two-sided p-values 
#### Note: if one-sided p-values are needed, set "printPVal=1" (p-values 
are not reported if set to "0") 
modelOutput_setting=list(printPVal=2) 
apollo_modelOutput(model, modelOutput_setting) 
 
### Save model output with two-sided p-values 
apollo_saveOutput(model, modelOutput_setting) 
 

 

Code Latent Class with continuous variables 
### Step 1: Clear memory 
rm(list = ls()) 
 
### Step 2: Set working directory for R initialization 
setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 
 
### Step 3: Load Apollo library 
library(apollo) 
 
### Step 4: Initialise Apollo code 
apollo_initialise() 
 
### Step 5: Set core controls 
###     ATTENTION: Your inputs must be enclosed in quotes like "this" 
apollo_control = list( 
  # USER ACTION: Specify model name 
  ##    Note: Change the model name for every model that you run 
  modelName       = "first_lc", 
  # USER ACTION: Provide model description 
  ##    Note: Change the model description to reflect the current model 
  modelDescr      = "this estimates lc", 
  # USER ACTION: Specify the column with the respondent id 
  indivID         = "peep_ID", 
  # Define number of cores used during estimation (used to speed up 
estimation time) 
  nCores          = 5, 
  # Define seed used for any random number generation 
  seed            = 100, 
  # USER ACTION: Set path to the folder on your PC where the model results 
will be stored 
  ##    Note: Use the "outputs" folder that was created by the pre-
processing syntax 
  outputDirectory = 
paste(getwd(),'outputs',"practicum_lcmodel_3class_covar",sep=.Platform$fil
e.sep) 
) 
 
### Step 6: Load data 
# Set path to the folder on your PC where the dataset is stored 
path_data = 
paste(getwd(),"data_with_dummies_final.csv",sep=.Platform$file.sep) 



# Load dataset into global environment 
database = read.csv(path_data, header=TRUE) 
 
### Step 7: Initialise all parameters that needs to be estimated in your 
MNL model 
# USER ACTION: Define the (1) class-specific and (2) class membership 
parameters 
#              followed by assigning a starting value. The class-specific 
#              alternative specific constant for the opt-out option and 
the 
#              constants for the class membership models are already 
defined. 
#              Please, complete the list with the parameters that are 
missing. 
#              Provide names for each parameter following by assigning a 
#              starting value. 
apollo_beta=c(# Class 1 
  b_co2m_1 = -0.1, 
  b_co2h_1 = 0, 
  b_price_1 = 0, 
  b_wd_1 = 0, 
  b_tt_1 = 0, 
   
  # Class 2 
  b_co2m_2 = 0, 
  b_co2h_2 = 0, 
  b_price_2 = 0, 
  b_wd_2 = 0, 
  b_tt_2 = 0, 
   
   
  # Class membership - class 1 
  delta_1        = -0.1, 
  g_treehugger_1 = 0, 
  g_ageold_1 = 0, 
  g_gender_1 = 0, 
  g_educated_1 = 0, 
  g_rich_1 = 0, 
  # Class membership - class 2 
  delta_2        = 0, 
  g_treehugger_2 = 0, 
  g_ageold_2 = 0, 
  g_gender_2 = 0, 
  g_educated_2 = 0, 
  g_rich_2 = 0) 
 
 
### Step 8 
##  USER ACTION: Complete the list with parameters (as initialised above) 
that 
##               should be kept fixed during estimation (in quotes) 
apollo_fixed = c("delta_2", "g_treehugger_2", "g_ageold_2", "g_gender_2", 
"g_educated_2", "g_rich_2") 
 



### Step 9: Define class membership model 
apollo_lcPars=function(apollo_beta, apollo_inputs){ 
  lcpars = list() 
  ## USER ACTION: Complete the empty lists by specifying the missing 
class-specific parameters 
  ##              which are needed for the class-specific utility 
functions 
   
  lcpars[["b_co2m"]] = list(b_co2m_1, b_co2m_2) 
  lcpars[["b_co2h"]] = list(b_co2h_1, b_co2h_2) 
  lcpars[["b_price"]] = list(b_price_1, b_price_2) 
  lcpars[["b_wd"]] = list(b_wd_1, b_wd_2) 
  lcpars[["b_tt"]] = list(b_tt_1, b_tt_2) 
   
   
  ## List of class-membership functions: 
  ##  These must use the same names as in classAlloc_settings (see below), 
order is irrelevant 
  V=list() 
  # USER ACTION: Define class-membership function for class 1 
  V[["class_1"]] = delta_1 + g_treehugger_1 * d26 + g_ageold_1 * d27 + 
g_gender_1 * d28 + g_educated_1 * d29 + g_rich_1 * d30 
   
  # USER ACTION: Define class-membership functions for class 2 
  V[["class_2"]] = delta_2 + g_treehugger_2 * d26 + g_ageold_2 * d27 + 
g_gender_2 * d28+ g_educated_2 * d29 + g_rich_2 * d30 
   
 
  ## Define settings for class-membership model 
  classAlloc_settings = list( 
    # USER ACTION: Attach class-membership functions to the respective 
classes 
    classes      = c(class_1=1, class_2=2), 
    # USER ACTION: Define which classes are "available" in our study, all 
classes are "available" 
    avail        = 1, 
    # USER ACTION: Attach list of class-membership functions 
    utilities    = V 
  ) 
   
  lcpars[["pi_values"]] = apollo_classAlloc(classAlloc_settings) 
  return(lcpars) 
} 
 
### Step 10: Checkpoint for model inputs 
apollo_inputs = apollo_validateInputs() 
 
### Step 11: Define model and likelihood function 
apollo_probabilities=function(apollo_beta, apollo_inputs, 
functionality="estimate"){ 
   
  ### Attach inputs and detach after function exit 
  apollo_attach(apollo_beta, apollo_inputs) 
  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 



   
  ### Create list of choice probabilities P 
  P = list() 
   
  ### Define settings for MNL model component that are generic across 
classes 
  mnl_settings = list( 
    # USER ACTION: Attach utility functions to the alternatives in your 
dataset 
    alternatives  = c(ALT1=1, ALT2=2), 
    # USER ACTION: Define which alternatives are "available" in each 
choice task; in our study, all alternatives are "available" 
    avail         = list(ALT1=1, ALT2=1), 
    # USER ACTION: Specify the column containing the chosen alternative; 
beware, no dummies are used (!) 
    choiceVar     = choice 
  ) 
   
  ### List of utility functions for each latent class: these must use the 
same names as in mnl_settings (see above), order is irrelevant 
  # USER ACTION: Set number of latent classes you are estimating in the 
model 
  ##       Note: You can call class-specific parameters by 
NAME_PARAM[[s]]; see example in ALT3 for the class-specific 
  ##             alternative specific constant 
  for(s in 1:2){ 
    V=list() 
    # USER ACTION: Define utility function for alternative 1 for class "s" 
    V[["ALT1"]] = b_co2m[[s]] * Var12.1 + b_co2h[[s]] * Var13.1 + 
b_price[[s]] * price1 + b_tt[[s]] * tt1 + b_wd[[s]] * wd1 
       
      # USER ACTION: Define utility function for alternative 2 for class 
"s" 
      V[["ALT2"]] = b_co2m[[s]] * Var12.2 + b_co2h[[s]] * Var13.2 + 
b_price[[s]] * price2 + b_tt[[s]] * tt2 + b_wd[[s]] * wd2 
       
     
    mnl_settings$utilities = V 
    mnl_settings$componentName = paste0("Class_",s) 
     
    ### Compute within-class choice probabilities using MNL model 
    P[[paste0("Class_",s)]] = apollo_mnl(mnl_settings, functionality) 
     
    ### Take product across observations for same individual (i.e., 
considering the panel structure of the data) 
    P[[paste0("Class_",s)]] = apollo_panelProd(P[[paste0("Class_",s)]], 
apollo_inputs ,functionality) 
  } 
   
  ### Compute latent class model probabilities 
  lc_settings   = list(inClassProb = P, classProb=pi_values) 
  P[["model"]] = apollo_lc(lc_settings, apollo_inputs, functionality) 
   
  ### Prepare and return outputs of function 



  P = apollo_prepareProb(P, apollo_inputs, functionality) 
  return(P) 
} 
 
### Step 12: Searching for starting value (recommended to ensure model 
convergence!) 
apollo_beta = apollo_searchStart(apollo_beta, 
                                 apollo_fixed, 
                                 apollo_probabilities, 
                                 apollo_inputs, 
                                 searchStart_settings=list(nCandidates=2)) 
 
### Step 13: Model estimation 
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, 
apollo_inputs) 
 
### Step 14: Print model output with two-sided p-values 
### Note: if one-sided p-values are needed, set "printPVal=1" (p-values 
are not reported if set to "0") 
modelOutput_setting=list(printPVal=2) 
apollo_modelOutput(model, modelOutput_setting) 
 
### Save model output with two-sided p-values 
apollo_saveOutput(model, modelOutput_setting) 
 

 

Code Mixed Logit with continuous variables 
### Step 1: Clear memory 
rm(list = ls()) 
 
### Step 2: Set working directory for R initialization 
setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 
 
### Step 3: Load Apollo library 
library(apollo) 
 
### Step 4: Initialise Apollo code 
apollo_initialise() 
 
### Step 5: Set core controls 
###     ATTENTION: Your inputs must be enclosed in quotes like "this" 
apollo_control = list( 
  # USER ACTION: Specify model name 
  ##    Note: Change the model name for every model that you run 
  modelName       = "mixedLogitModel", 
  # USER ACTION: Provide model description 
  ##    Note: Change the model description to reflect the current model 
  modelDescr      = "mixing", 
  # USER ACTION: Specify the column with the respondent id 
  indivID         = "peep_ID", 
  # USER ACTION: Set logical variable to activate estimation of random 
parameters 



  mixing          = TRUE, 
  # Define number of cores used during estimation (used to speed up 
estimation time) 
  nCores          = 5, 
  # USER ACTION: Set path to the folder on your PC where the model results 
will be stored 
  ##    Note: Use the "outputs" folder that was created by the pre-
processing syntax 
  outputDirectory = "outputs" 
) 
 
### Step 6: Load data 
# Set path to directory on your PC where the dataset is stored 
path_data = 
paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies_final.csv") 
# Load dataset into global environment 
database = read.csv(path_data, header=TRUE) 
 
### Step 7: Initialise all parameters that needs to be estimated in your 
Mixed Logit model 
# USER ACTION: Define the (1) mu parameters that estimate the sample mean, 
and 
#                         (2) sigma parameters that estimate the sample 
distribution 
#              Please, complete the list with the parameters that are 
missing. 
#              Provide names for each parameter following by assigning a 
#              starting value. 
apollo_beta=c( 
  mu_co2m = 0, 
  sigma_co2m = 0, 
  mu_co2h = 0, 
  sigma_co2h = 0, 
  mu_price = 0, 
  sigma_price = 0, 
  mu_wd = 0, 
  sigma_wd = 0, 
  mu_tt = 0, 
  sigma_tt = 0) 
 
### Step 8: 
##  USER ACTION: Complete the list with parameters (as initialised above) 
that 
##               should be kept fixed during estimation (in quotes); if 
none, keep empty 
apollo_fixed = c() 
 
### Step 9: Set parameters for generating draws 
# USER ACTION: Define the number of one random variable for each sigma in 
apollo_beta 
# Use the command line interNormDraws 
 
apollo_draws = list( 
  interDrawsType = "mlhs", 



  interNDraws    = 200, 
  interUnifDraws = c(), 
  interNormDraws = c("inter_1","inter_2","inter_3","inter_4","inter_5"), 
  intraDrawsType = "mlhs", 
  intraNDraws    = 0, 
  intraUnifDraws = c(), 
  intraNormDraws = c() 
) 
 
### Step 10: Create random parameters 
# USER ACTION: Write every random coefficient function 
# If necessary check the lecture slides 
apollo_randCoeff = function(apollo_beta, apollo_inputs){ 
  randcoeff = list() 
   
  randcoeff[["b_co2m"]] = mu_co2m + sigma_co2m * inter_1 
  randcoeff[["b_co2h"]] = mu_co2h + sigma_co2h * inter_2 
  randcoeff[["b_price"]] = mu_price + sigma_price* inter_3 
  randcoeff[["b_wd"]] = mu_wd + sigma_wd* inter_4 
  randcoeff[["b_tt"]] = mu_tt + sigma_tt* inter_5 
   
  return(randcoeff) 
} 
 
### Step 11: Checkpoint for model inputs 
apollo_inputs = apollo_validateInputs() 
 
### Step 12: Define model and likelihood function 
apollo_probabilities=function(apollo_beta, apollo_inputs, 
functionality="estimate"){ 
     
  ### Attach dataset inputs and detach after function exit 
  apollo_attach(apollo_beta, apollo_inputs) 
  on.exit(apollo_detach(apollo_beta, apollo_inputs)) 
 
  ### Create list of choice probabilities P 
  P = list() 
   
  ### List of utility functions: these must use the same names as in 
mnl_settings (see below), order is irrelevant 
  V = list() 
   
  # USER ACTION: Define utility function for alternative 1 
  # Code "effectiveness" and "risk false negative" attributes as numerical 
variables 
  V[["ALT1"]]  = b_co2m * Var12.1 + b_co2h * Var13.1 + b_price * price1 + 
b_wd * wd1 + b_tt * tt1 
 
  # USER ACTION: Define utility function for alternative 2 
  # Code "effectiveness" and "risk false negative" attributes as numerical 
variables 
  V[["ALT2"]]  = b_co2m * Var12.2 + b_co2h * Var13.2 + b_price * price2 + 
b_wd * wd2 + b_tt * tt2 
   



   
  ### Define settings for MNL model component 
  mnl_settings = list( 
    # USER ACTION: Attach utility function to the choice alternative in 
your dataset 
    alternatives  = c(ALT1=1, ALT2=2), 
    # USER ACTION: Define which alternatives are "available" in each 
choice task 
    #              In our study, all alternatives are "available" 
    avail         = 1, 
    # USER ACTION: Specify the column containing the chosen alternative 
    choiceVar     = choice, 
    # USER ACTION: Attach list of utility functions 
    utilities     = V 
  ) 
   
  ### Compute choice probabilities using MNL model 
  #### functionality="estimate" as the parameters will be updated for 
estimating the MNL model 
  P[["model"]] = apollo_mnl(mnl_settings, functionality) 
   
  ### Take product across observations for same individual 
  ### (i.e., considering the panel structure of the data) 
  P = apollo_panelProd(P, apollo_inputs, functionality) 
   
  ## Average across inter-individual draws 
  P = apollo_avgInterDraws(P, apollo_inputs, functionality) 
   
  ### Prepare and return outputs of function 
  P = apollo_prepareProb(P, apollo_inputs, functionality) 
  return(P) 
} 
 
### Step 13: Model estimation 
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, 
apollo_inputs) 
 
### Step 14: Print model output with two-sided p-values 
#### Note: if one-sided p-values are needed, set "printPVal=1" (p-values 
are not reported if set to "0") 
modelOutput_setting=list(printPVal=2) 
apollo_modelOutput(model, modelOutput_setting) 
 
### Save model output with two-sided p-values 
apollo_saveOutput(model, modelOutput_setting) 
 
### Step 15: Estimate individual coefficients conditional on choice 
sequence 
conditionals = apollo_conditionals(model, 
                                   apollo_probabilities, 
                                   apollo_inputs) 
 
# Set path to directory on your PC where the conditionals will be stored 



path_cond = 
paste0(apollo_control$outputDirectory,sep=.Platform$file.sep,"conditionals
.RDS") 
### Save conditionals 
saveRDS(conditionals, file = path_cond) 
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