
A new way of commuting: Understanding consumer

preferences in the emerging shared micromobility market
December 4 - 2025

Aiden de Haan

Andreas Hotvedt

Hy-Cang Lu

Tobias Navntoft

Introduction and selection of a product/service
Shared mobility services that offer one-time rentals of various vehicles, such as regular

bikes, E-Mopeds, and E-bikes, have become increasingly common in urban travel across Europe.

As European countries are favoring electric vehicles, and battery technology is developing and

becoming cost-competitive, this novel form of rental mobility option has become a larger part of

the product mix in the short-form transport market (micromobility market). This growth is

expected to be sustained long-term as it meets previously unmet consumer needs, e.g., when

private transport is unavailable, and public transport does not meet location needs or is unreliable.

In the Netherlands, the largest shared mobility brands include Lime, CHECK, and Felyx, with

offerings of e-mopeds and e-bikes, a sustainable alternative to the traditional gasoline mopeds that

are common in the Dutch market (Montes, Geržinic, Veeneman, van Oort, & Hoogendoorn, 2023).

Shared micromobility is a novel and not well-understood market, this is because consumer

needs vary significantly in different subregions within each city. For example, offering e-bikes to

a region that is well-served by trams/metros might not be a profitable venture, compared to regions

that have fewer alternatives. In addition to geographic factors, several demographic factors play a

role, e.g., older/family-oriented neighborhoods are more likely to have cars or other private options

readily available (Fu, van Lierop, & Ettema, 2024).

Studies show that 80% of individuals who typically use the shared-mobility options, such

as Lime and CHECK, tend to be within the age range of 21-40, and approximately 71% hold some

level of higher education, e.g., a bachelor’s degree or an applied science degree (Reck & Axhausen,

2021). The demographic of this age group aligns more closely with the primary uses of shared

micromobility, which is the daily commute to/from work or education (Reck & Axhausen, 2021;

Montes, Geržinic, Veeneman, van Oort, & Hoogendoorn, 2023).

As a result, the challenge is understanding the segment is essential for ensuring profitable

ventures for firms in the shared micromobility industry. For example, which aspects of shared

micromobility do these users value, and to what extent? Is their demand mainly driven by

convenience, sustainability, price, travel time, or some combination of these factors?

To investigate this, our study uses Discrete Choice Experiments (DCEs) to analyze the

preferences of people primarily aged 18-40 in the Netherlands, as these individuals are likely to

have interacted with shared micromobility options. The focus is to analyze how important price,

travel time, and walking distance to the vehicle are, as well as how sustainable the vehicle they

use is, in terms of CO2 emissions over the vehicle's lifetime. Furthermore, we investigate whether

these preferences vary based on the income of the respondents and their self-reported sustainability

focus. Identifying whether there is heterogeneity in the target segment allows for more specific

consumer targeting and a better match of product offering. This will provide insights for

potential/existing shared micromobility firms when deciding their profit offering.

Attributes and levels: Describe how attributes and levels were derived
Price attribute: Price levels were derived from real shared mobility prices in the

Netherlands. For example, based on CHECK’s pricing of €0.35 per minute plus a €1 unlock fee, a

3 km trip typically costs €2.80-€4.50 depending on vehicle type and traffic. To reflect realistic

variation across modalities and traffic, we selected a price range of €2-€5 (see Table 1).

Sustainability attribute: The sustainability attribute was defined as the lifecycle carbon

footprint of each shared mobility option relative to a standard gasoline moped. We chose this

relative framing for two main reasons. First, anchoring sustainability to a familiar reference point

makes the survey more intuitive for respondents, as most users have a basic sense of how polluting

a gas moped is and would not derive any meaning from raw emission values. Second, estimating

absolute CO2 emissions for electric vehicles is complex as it depends on factors such as the

electricity mix, battery and vehicle production, and supply chains. Thus, expressing sustainability

in relative terms provides a more accurate way to measure how sustainable modalities are

compared to each other (see Table 1).

Walking distance to the vehicle: Unlike public transport stops, shared mobility vehicles

can be located anywhere within the service area, and availability fluctuates throughout the day.

Users are often not in an ideal location when they start looking for a vehicle. For example, they

may be on the edge of the service area or in a high-demand area with few vehicles nearby. For this

reason, walking distance levels were chosen to represent realistic suboptimal conditions, where

users may need to walk a small to medium-long distance to find an available vehicle. By looking

at the distance of shared mobility hubs to various central stations, we found that distances range

from 100-500 meters. These walking distance levels allow respondents to evaluate situations that

closely resemble typical shared mobility use (See table 1).

Travel time: The travel time levels were chosen to reflect realistic variations for a 3 km

urban trip. In the best-case scenario, such as taking a fast moped or a car on uncongested streets,

the trip can be completed in around 5 minutes. In contrast, under heavier traffic or with slower

modalities, the same 3 km can take up to 15 minutes. By capturing this range between optimal and

congested conditions, the selected travel time levels represent the variability users commonly face

when using shared mobility services (See table 1).

Table 1 Attributes and Levels
Attribute Low Medium High

Sustainability Level 0% CO2 25% CO2 50% CO2

Price €2 €3.5 €5

Distance to Vehicle 100 250 500

Travel Time 5 10 15

Methodology
A Discrete Choice Experiment (DCE) is appropriate for this research because it allows us

to estimate the relative importance that users assign to specific attributes of shared mobility

options. By modelling choices as a function of these attributes, we can quantify how each one

affects utility and user preferences. This provides a structured and empirical way to understand the

role of sustainability relative to price, convenience, and speed in the adoption of shared mobility

services.

Each choice task contained two unlabeled mobility options: Option A and Option B,

defined solely by their attributes (see Figure 1). Respondents were required to make a forced choice

between the two alternatives, with no opt-out option provided. This is because adding an opt-out

choice would require a bigger sample size to obtain significant results, which, given the scope of

the survey collection, was not feasible.

Furthermore, we chose a non-full factorial design because it allows us to independently

estimate the effects of each attribute while avoiding the need to present respondents with every

combination, preserving statistical power and interpretability with far fewer choice profiles. To

obtain the combinations of the experimental design, we used a D-efficient design, which resulted

in 24 different choice tasks1. 12 random tasks were shown to each participant to reduce the risk of

cognitive fatigue respondents might occur if they had to answer 24 choice tasks. A fully

1 Statistical identification of parameters: 8/(2-1)*3=24

randomized design was chosen instead of blocking because the expected sample size of responses,

up to about 120 respondents, would not sufficiently mitigate between-block differences.

Randomizing individual questions, therefore, reduces the risk of systematic bias and provides a

more balanced representation of respondent characteristics across the survey.

Before the final design, a pilot study was first conducted to receive estimates on the priors

of the various attributes that would then be used to make a more efficient design for the final

survey. Due to a smaller sample size of the pilot study, only the size of some coefficients was used

(e.g., price) while other coefficients were less significant but gave an indication of the direction of

the prior (e.g., CO2 emissions). Furthermore, we collected feedback on the design of the survey

and iterated our survey design to arrive at the following choice task visualization (Figure 1).

Figure 1 Example Choice Task Shown to Respondents

Before showing the choice tasks, the respondents were asked to imagine the following

hypothetical scenario: “In this survey, you will be shown a hypothetical situation: You are 3 km

away from your destination and must choose between different shared rental mobility options.

Each option varies on four attributes: 1) CO2 Emissions, 2) Price for the full 3km trip, 3) Walking

distance to the vehicle, and 4) Travel time.2

The experimental design primarily identifies the main effects of each attribute by varying

the attribute values in choice tasks. relative to competing attributes. Additionally, the survey

incorporates respondent characteristics such as age, education, gender, and income. For example,

someone with a high income might be less price sensitive. Large cross-national surveys find that

people with a higher level of education tend to acknowledge that climate change is happening and

might therefore care more about sustainability. By incorporating these respondent characteristics,

2 See appendix 2 for the full design.

the design allows for the estimation of interaction effects between demographic variables and the

sustainability attribute. These interactions help assess how factors such as education level shape

individuals’ preferences and their relative openness toward more sustainable mobility options.

Survey respondent demographics and descriptive stats
The survey included 122 respondents, most of whom were young adults: nearly half (49%)

were aged 18–24, followed by 28% aged 25–34. The gender distribution was predominantly male

(64%), with females representing 35% of the sample. Educational attainment was split mainly

between bachelor’s degree holders (38%) and those with a high-school education (37%). Income

levels were broadly dispersed, though the largest groups reported earnings below €25,000 (26%)

or between €25,000–49,999 (25%). When it came

to sustainability, 39.5% of people stated they were

“Mostly Concerned” with sustainability, 25.8%

stated they were neither or not concerned, and

19.4% said they were mostly unconcerned, whilst

only 3.2% said they were very concerned. Overall,

the sample consisted mostly of younger

participants with varying educational backgrounds,

income levels, and a 50/50 attitude towards

sustainability.
All demographic variables were converted into binary dummy variables by splitting the

data. Age was split into below/above age 25. Income was split into below/above 50k. Gender was

converted into Male/Female, as the “Other” category only had one response and would thus not

yield any significant evaluation.

We estimated several discrete choice models to examine respondents’ decision patterns.

As a starting point, we employed a standard multinomial logit (MNL) specification using only the

attributes included in the choice experiment. Because all attributes are categorical, reference levels

were defined to avoid multicollinearity: for each attribute, the lowest or most preferable level

served as the baseline. Specifically, the reference categories were No CO₂, €2, 100 meters, and 5

minutes. Another MNL model was run using continuous variables since the categorical version of

the MNL yielded almost linear results in the effects.

Figure 2 Survey Age and Gender Distribution

All other levels were coded relative to these baselines. The resulting utility function for

alternative 𝑖 (where 𝑖 = 1, 2) was defined as follows:

𝑈𝑖 = 𝛽𝐶02, 𝑚 ⋅ 𝐶𝑂2𝑚,𝑖  +  𝛽𝐶02, ℎ ⋅ 𝐶𝑂2ℎ,𝑖  +  𝛽𝑝𝑟𝑖𝑐𝑒, 35 ⋅ 𝑝𝑟𝑖𝑐𝑒3.5,𝑖  +  𝛽𝐷𝑖𝑠𝑡, 250 ⋅ 𝐷𝑖𝑠𝑡250,𝑖 
+  𝛽𝐷𝑖𝑠𝑡, 500 ⋅ 𝐷𝑖𝑠𝑡500,𝑖  +  𝛽𝑇𝑖𝑚𝑒, 10 ⋅ 𝑇𝑖𝑚𝑒10,𝑖  +  𝛽𝑇𝑖𝑚𝑒, 15 ⋅ 𝑇𝑖𝑚𝑒15,𝑖  +  𝜀𝑖

The Multinomial Logit with Interactions added the interaction of income with price and

walking distance with age and sustainability perception with Co2 choice.

𝑈𝑖 = 𝛽𝐶02, 4𝑥 ⋅ 𝐶𝑂24𝑥,𝑖  +  𝛽𝐶02, 2𝑥 ⋅ 𝐶𝑂22𝑥,𝑖  +  𝛽𝑝𝑟𝑖𝑐𝑒, 3.5 ⋅ 𝑝𝑟𝑖𝑐𝑒3.5,𝑖  +  𝛽𝑝𝑟𝑖𝑐𝑒, 5 ⋅ 𝑝𝑟𝑖𝑐𝑒5,𝑖 
+  𝛽𝐷𝑖𝑠𝑡, 250 ⋅ 𝐷𝑖𝑠𝑡250,𝑖  +  𝛽𝐷𝑖𝑠𝑡, 500 ⋅ 𝐷𝑖𝑠𝑡500,𝑖  +  𝛽𝑇𝑖𝑚𝑒, 10 ⋅ 𝑇𝑖𝑚𝑒10,𝑖  +  𝛽𝑇𝑖𝑚𝑒, 15

⋅ 𝑇𝑖𝑚𝑒15,𝑖  + 𝛽𝐷𝑖𝑠𝑡∗𝐴𝑔𝑒 ⋅ 𝐷𝑖𝑠𝑡 ∗ 𝐴𝑔𝑒 + 𝛽𝐼𝑛𝑐𝑜𝑚𝑒∗𝑃𝑟𝑖𝑐𝑒 ⋅ 𝐼𝑛𝑐𝑜𝑚𝑒 ∗ 𝑃𝑟𝑖𝑐𝑒
+ 𝛽𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦∗𝐶𝑜2 ⋅ 𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝐶𝑜2 +  𝜀𝑖

Moreover, we estimated a Latent Class Multinomial Logit Model to identify potential

subgroups within the shared mobility sample whose preferences differ systematically. The latent

class approach assumes that the population is composed of a finite number of unobserved classes,

each characterized by distinct preference structures. For this study, we specified two latent classes,

motivated by the expectation that respondents may differ in how they value sustainability, price,

distance to the vehicle, and travel time. A 2-segment model was run as it yielded more significant

results.

In addition to the multinomial logit, we estimated a Mixed Logit Model to account for

unobserved preference heterogeneity in shared-mobility choices. The utility specification followed

the same structure as in the MNL model, but the attribute coefficients were treated as random

rather than fixed. Each random parameter was expressed as:

𝑈𝑖 = μβ + 𝜎𝛽   + 𝜀𝑖

Where the errors (ԑi) are normally distributed random variables with mean zero and unit

variance. This formulation allows respondents to differ in how strongly they value changes in

sustainability level, price, distance to the vehicle, and travel time.

Results
After estimating all the candidate models discussed previously, we selected the categorical

MNL model with interaction effects as our final model. This selection was based on model fit and

information criteria; these being the log-likelihood values (LL), the Akaike information criterion

(AIC), and the Schwarz information criterion (BIC). The values obtained by these models can be

viewed in the appendix.

Our chosen model outperformed the alternative model options on every criterion (see Table

2), indicating that accounting for interaction effects greatly improves explanatory power.

Therefore, we will discuss the results obtained in this model.

Table 2 Mixed Logit Performance Characteristics
Model LL AIC BIC

MNL_continuous -869.3 1748 1774

MNL_categorical -866.38 1748.77 1790.95

MNL_interactions cat -480.19 988.38 1054.45

Latent Class cat -779.91 1603 1719

MixedLogit cat

MNL_interactions cont

Latent Class cont

Mixed Logit cont

-784.9

-855.23

-783.89

-725.11

1601

1728

1599

1470

1686

1775

1684

1522

Table 3 Multinomial Logit Model with interaction effects
Parameter Estimate Std. error P-value

b_co2m -0.028 0.138 0.841

b_co2h -0.151 0.176 0.389

b_pricem -1.033 0.214 0.000

b_priceh -2.520 0.450 0.000

b_wdm -0.199 0.131 0.130

b_wdh -0.691 0.150 0.000

b_ttm -0.509 0.110 0.000

b_tth -1.122 0.189 0.000

b_co2m_green -0.350 0.226 0.121

b_co2h_green -0.669 0.272 0.015

b_pricem_wealthy 0.669 0.285 0.019

b_priceh_wealthy 1.229 0.562 0.029

b_wdm_ageold -0.235 0.240 0.327

b_wdh_ageold -0.504 0.292 0.085

Table 3 reports the parameter estimates. As expected, price, walking distance, and travel

time all exert a negative effect on utility. Both medium and high price levels are highly significant

and negative, indicating that respondents are strongly price sensitive. For walking distances, the

coefficient for 500 meters is negative and statistically significant, while the effect of 250 meters is

negative but not significant, suggesting that only relatively long walking distances substantially

reduce utility. Likewise, both the 10-minute and 15-minute travel time levels significantly decrease

utility, with the larger coefficient for 15 minutes indicating a stronger dislike of longer in-vehicle

time. Interestingly, the C02 coefficient for both high and low emissions is negative, but not

significant, suggesting that the model was not able to estimate how C02 impacts sustainability.

Small standard errors for Co2, travel time, and distance indicate that these effects would

not vary much across repeated samples, so we can be relatively confident in their size and sign.

Larger standard errors for the high price level and interaction effect terms imply more

uncertainty around those effects, even though their signs align with expectations.

The interaction between sustainability and self-reported sustainability shows that only the

high-emission level is statistically significant (p = 0.015), indicating that sustainability-aware

individuals strongly dislike the most polluting options, while the medium level is not significant

(p = 0.121). The income-price interactions are positive and significant at the 5% level (p = 0.019

and 0.029), meaning wealthier respondents are significantly less sensitive to both medium and

high price increases. For age-distance, the coefficients are negative but not statistically significant

at 5% (250 m: p = 0.327; 500 m: weakly significant at p = 0.085), suggesting older respondents

may be more averse to long walking distances, but this effect is only weakly supported by the data.

Willingness to pay

Using the medium price coefficient in Table 5 as a monetary benchmark, the sustainability

coefficients can be expressed as willingness to pay. For the average respondent, the utility loss

from increasing emissions from 0% to 50% (–0.151) corresponds to a WTP of only about

€0.15(0.151/1.033) to avoid that change. Among sustainability-oriented (“green”) respondents, the

relevant effect combines the main CO₂ coefficient and the interaction term (–0.151 – 0.669 = –

0.820), implying a much higher WTP of roughly €0.79 to avoid the high-emission option. This

shows that while the typical respondent places a relatively small monetary value on emission

reductions, environmentally conscious individuals are willing to pay several times more for the

most sustainable alternative.

Marginal Utility Effects

Table 4 Marginal Effects of Multinomial Logit Model with interaction effects
Attribute From To Alt DP

CO2 0% Co2 25% Co2 0.006945

CO2 0% Co2 50% Co2 0.03775

CO2_green 0% Co2 25% Co2 -0.0866

CO2_green 0% Co2 50% Co2 0.1593

Price €2 €3.5 -0.2374

Price €2 €5 -0.4255

Price_Rich €2 €3.5 0.1612

Price_Rich €2 €5 0.27355

Walking Distance 100m 250m 0.04948

Walking Distance 100m 500m 0.1662

Walking Distance_Age 100m 250m 0.05838

Walking Distance_Age 100m 500m 0.1232

Time Travel 5 min 10 min 0.1244

Time Travel 5 min 15 min 0.2543

*Only absolute values are reported

Overall, the price attribute was found to have the biggest marginal effect. The highest

price level was found to bring the most disutility to respondents. It is also observed that price is

the single strongest driver in choice probability; moving from a price of 2 euros to 3.5 euros and

from 2 euros to 5 euros reduces the probability of choosing an option by nearly 24 and 40

percentage points, respectively. Interestingly, respondents with higher income are substantially

less price sensitive; the choice probabilities decrease by 16 and 27 percent, respectively. For

CO2 emission levels, we obtain that higher emissions cause a noticeable drop in preference

compared to moderate emissions. This effect is less obvious for the respondents who care more

about sustainability.

Conclusion and Recommendation

Our study showed that interaction effects and relaxing the assumption that attributes have

a linear effect on utility greatly improve model fit. It is therefore imperative that managers decide

on their target segment.

Based on our findings, it is found that on average, people value the sustainability level of

their shared mobility vehicle. It is thus beneficial for companies to perhaps express how green their

vehicles really are. There are several simple features companies could add to their product to

achieve this. We suggest a simple sticker on the vehicle with information on the CO2 emission

level of the vehicle would be effective. This is a cheap way to inform the consumer about the

sustainability level of a vehicle, leading to greater profits for the eco-friendlier options, as more

consumers would pick these vehicles. In addition, this is further backed by the fact that the

willingness to pay of more sustainability-aware individuals is substantially higher than that of non-

sustainability-aware individuals.

Furthermore, the interaction effects, particularly of price with income and age with walking

distance, suggest that placing mobility hubs in higher-income or older areas could justify premium

pricing, as these groups appear less sensitive to price increases and more willing to pay for reduced

access distance. Thus, highlighting a potential pool of customers that might normally revert to

other mobility options.

Since we have chosen a categorical model, we cannot generalize our findings and infer the

effect that an attribute would have when its value is outside of our attribute levels. We thus suggest

that further research could include more levels of attributes. We also would have liked to include

some other interaction effects. For example, how often people use shared mobility options and

how this would impact their choice of a sustainable option. Furthermore, running multiple pilots

would prove beneficial, especially when more interaction effects are included. Lastly, the lack of

an opt-out option may have biased the estimates. Thus, a larger sample size including an opt-out

alternative is recommended for more accurate results.

Taken together, our findings show that understanding preference heterogeneity is essential

for designing a valued sustainable mobility product. By refining attribute specifications,

incorporating more complex interactions, and expanding sample size, future work can build on

these results to support data-driven decision-making in this sector.

Bibliography

Fu, X., van Lierop, D., & Ettema, D. (2024). Shared micromobility in multimodal travel:

Evidence from three European cities. The international journal of urban policy and

planning, https://doi.org/10.1016/j.cities.2024.105664.

Montes, A., Geržinic, N., Veeneman, W., van Oort, N., & Hoogendoorn, S. (2023). Shared

micromobility and public transport integration - A mode choice study using stated

preference data. Research in Transportation Economics, 99,

10.1016/j.retrec.2023.101302.

Reck, D. J., & Axhausen, K. W. (2021). Who uses shared micro-mobility services? Empirical

evidence from Zurich, Switzerland. Transportation research, 94,

https://doi.org/10.1016/j.trd.2021.102803.

Appendix

Appendix 1. Summary output tables of comprehensive analysis

Table 5 Estimates for Multinomial Logit model without interaction effects

Parameter Estimate Std. error P-value

b_co2m -0.188 0.084 0.026

b_co2h -0.441 0.107 0.000

b_pricem -0.754 0.108 0.000

b_priceh -1.772 0.199 0.000

b_wdm -0.183 0.094 0.052

b_wdh -0.665 0.107 0.000

b_ttm -0.603 0.090 0.000

b_tth -1.208 0.137 0.000

Table 6 Log likelihood & Information criteria for MNL with no interaction effects
Statistic Value

Log-Likelihood -866.38

BIC 1790.95

AIC 1748.77

Table 7 basic MNL with continuous variables
Parameter Estimate Std. error P-value

b_co2m -0.200 0.084 0.017

b_co2h -0.441 0.104 0.000

b_price -0.592 0.065 0.000

b_wd -0.002 0.000 0.000

b_tt -0.122 0.014 0.000

Table 8 Log likelihood & Information criteria for basic continuous MNL
Statistic Value

Log-Likelihood -869.3

BIC 1774

AIC 1748

Table 9 Results for Multinomial Logit model with interaction effects
Parameter Estimate Std. error P-value

b_co2m -0.028 0.138 0.841

b_co2h -0.151 0.176 0.389

b_pricem -1.033 0.214 0.000

b_priceh -2.520 0.450 0.000

b_wdm -0.199 0.131 0.130

b_wdh -0.691 0.150 0.000

b_ttm -0.509 0.110 0.000

b_tth -1.122 0.189 0.000

b_co2m_green -0.350 0.226 0.121

b_co2h_green -0.669 0.272 0.015

b_pricem_wealthy 0.669 0.285 0.019

b_priceh_wealthy 1.229 0.562 0.029

b_wdm_ageold -0.235 0.240 0.327

b_wdh_ageold -0.504 0.292 0.085

Table 10 Log likelihood & Information criteria for MNL with interaction effects
Statistic Value

Log-Likelihood -480.19

BIC 1054.45

AIC 988.38

Table 11 Estimates for Multinomial Logit model with interaction effects
Parameter Estimate Std. error P-value

b_co2m -0.028 0.138 0.841

b_co2h -0.151 0.176 0.389

b_pricem -1.033 0.214 0.000

b_priceh -2.520 0.450 0.000

b_wdm -0.199 0.131 0.130

b_wdh -0.691 0.150 0.000

b_ttm -0.509 0.110 0.000

b_tth -1.122 0.189 0.000

b_co2m_green -0.350 0.226 0.121

b_co2h_green -0.669 0.272 0.015

b_pricem_wealthy 0.669 0.285 0.019

b_priceh_wealthy 1.229 0.562 0.029

b_wdm_ageold -0.235 0.240 0.327

b_wdh_ageold -0.504 0.292 0.085

Table 12 Results for Latent class model
Parameter Estimate Std. error P-value

b_co2m_1 -0.430 0.265 0.105

b_co2h_1 -0.773 0.321 0.016

b_pricem_1 -0.449 0.228 0.049

b_priceh_1 -0.865 0.329 0.008

b_wdm_1 -0.655 0.444 0.140

b_wdh_1 -1.473 0.903 0.103

b_ttm_1 -1.256 0.786 0.110

b_tth_1 -2.498 1.643 0.128

b_co2m_2 -0.159 0.570 0.780

b_co2h_2 -0.751 0.391 0.055

b_pricem_2 -1.381 0.522 0.008

b_priceh_2 -3.357 1.769 0.058

b_wdm_2 -0.067 0.228 0.770

b_wdh_2 -0.513 0.191 0.007

b_ttm_2 -0.513 0.200 0.114

b_tth_2 -0.682 0.491 0.165

delta_1 -1.123 0.817 0.169

gamma_green_1 -0.115 0.926 0.901

gamma_ageold_1 0.353 0.915 0.699

gamma_gender_1 0.758 0.785 0.334

gamma_educated_1 0.602 0.528 0.254

gamma_wealthy_1 0.448 0.529 0.397

delta_2 0.0 0.0 0.0

gamma_green_2 0.0 0.0 0.0

gamma_ageold_2 0.0 0.0 0.0

gamma_gender_2 0.0 0.0 0.0

gamma_educated_2 0.0 0.0 0.0

gamma_wealthy_2 0.0 0.0 0.0

Table 13 Log likelihood & Information criteria for Latent class model
Statistic Value

Log-Likelihood -779.91

BIC 1719.83

AIC 1603.84

Table 14 Results for Mixed logit model
Parameter Estimate Std. error P-value

mu_co2m 0.020 0.265 0.105

Sigma_co2m -0.773 0.321 0.016

b_pricem_1 -0.449 0.228 0.049

b_priceh_1 -0.865 0.329 0.008

b_wdm_1 -0.655 0.444 0.140

b_wdh_1 -1.473 0.903 0.103

b_ttm_1 -1.256 0.786 0.110

b_tth_1 -2.498 1.643 0.128

b_co2m_2 -0.159 0.570 0.780

b_co2h_2 -0.751 0.391 0.055

b_pricem_2 -1.381 0.522 0.008

b_priceh_2 -3.357 1.769 0.058

b_wdm_2 -0.067 0.228 0.770

b_wdh_2 -0.513 0.191 0.007

b_ttm_2 -0.513 0.200 0.114

b_tth_2 -0.682 0.491 0.165

delta_1 -1.123 0.817 0.169

gamma_green_1 -0.115 0.926 0.901

gamma_ageold_1 0.353 0.915 0.699

gamma_gender_1 0.758 0.785 0.334

gamma_educated_1 0.602 0.528 0.254

gamma_wealthy_1 0.448 0.529 0.397

delta_2 0.0 0.0 0.0

gamma_green_2 0.0 0.0 0.0

gamma_ageold_2 0.0 0.0 0.0

gamma_gender_2 0.0 0.0 0.0

gamma_educated_2 0.0 0.0 0.0

gamma_wealthy_2 0.0 0.0 0.0

Table 15 Log likelihood & Information criteria for Mixed Logit model
Statistic Value

Log-Likelihood -784.9

BIC 1686

AIC 1601

Table 16 Continuous Latent Class model estimates

Parameter Estimate Std. error P-value

b_co2m_1 -0.397 0.160 0.011

b_co2h_1 -0.657 0.266 0.013

b_price_1 -0.279 0.125 0.025

b_wd_1 -0.004 0.001 0.000

b_tt_1 -0.282 0.053 0.000

b_co2m_2 -0.255 0.160 0.111

b_co2h_2 -0.811 0.215 0.000

b_price_2 -1.002 0.155 0.000

b_wd_2 -0.001 0.000 0.001

b_tt_2 -0.065 0.019 0.001

delta_1 -1.284 0.727 0.078

g_green_1 -0.261 0.518 0.614

g_old_1 0.335 0.430 0.436

g_gender_1 0.793 0.485 0.102

g_educated_1 0.579 0.491 0.238

g_wealthy_1 0.400 0.438 0.361

delta_2 0.0 0.0 0.0

g_green_2 0.0 0.0 0.0

g_old_2 0.0 0.0 0.0

g_gender_2 0.0 0.0 0.0

g_educated_2 0.0 0.0 0.0

g_wealthy_2 0.0 0.0 0.0

Table 17 Log likelihood & Information criteria for Continuous Latent class model

Statistic Value

Log-Likelihood -783.89

BIC 1684

AIC 1599

Table 18 Continuous mixed Logit model estimates

Parameter Estimate Std. error P-value

mu_co2m -0.379 0.141 0.007

sigma_co2m 0.096 0.126 0.447

mu_co2h -1.034 0.221 0.000

sigma_co2h 0.963 0.189 0.000

mu_price -1.101 0.142 0.000

sigma_price 1.054 0.146 0.000

mu_wd -0.003 0.001 0.000

sigma_wd 0.004 0.001 0.000

mu_tt -0.237 0.032 0.000

sigma_tt -0.226 0.028 0.000

Table 19 Log likelihood & Information criteria for Continuous Mixed Logit model

Statistic Value

Log-Likelihood -725.11

BIC 1522

AIC 1470

Table 20 Estimates for continuous Multinomial Logit model with interaction effects

Parameter Estimate Std. error P-value

b_co2m 0.002 0.097 0.983

b_co2h -0.131 0.122 0.284

b_price -0.709 0.095 0.000

b_wd -0.002 0.000 0.000

b_tt -0.125 0.014 0.000

b_co2m_green -0.450 0.166 0.007

b_co2h_green -0.711 0.204 0.000

b_price_wealthy 0.237 0.135 0.079

b_wd_age -0.000 0.001 0.748

Table 21 Log likelihood & Information criteria for Continuous MNL with interaction effects

Statistic Value

Log-Likelihood -855.23

BIC 1775

AIC 1728

Appendix 2. Survey design

Choice tasks:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

Each respondent was shown 12 Choice tasks at random after which they were asked the
following demographic questions:

Appendix 3. Syntax used to generate the generate the various models
Code MNL basic with categorical variables only
Step 1: Clear memory
rm(list = ls())

Step 2: Set working directory for R initialization
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

Step 3: Load Apollo library
library(apollo)

Step 4: Initialize Apollo code
apollo_initialise()

Step 5: Set core controls
ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo_control = list(
 # USER ACTION: Specify model name
 ## Note: Change the model name for every model that you run
 modelName = "MNL_basic",
 # USER ACTION: Provide model description
 ## Note: Change the model description to reflect the current model
 modelDescr = "basic model",
 # USER ACTION: Specify the column with the respondent id
 indivID = "peep_ID",
 # USER ACTION: Set path to the folder on your PC where the model results
will be stored
 ## Note: Use the "outputs" folder that was created by the pre-
processing syntax
 outputDirectory ="outputs"
)

Step 6: Load data
Set path to the folder on your PC where the dataset is stored
path_dataset =
paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies_final.csv")

Load dataset into global environment
database = read.csv(path_dataset, header=TRUE)

Step 7: Initialize all parameters that needs to be estimated in your
MNL model
USER ACTION: The parameters for the attribute "Effectiveness" are
defined. Please,
complete the list with parameters that need to be
estimated. Provide
names for each parameter following by assigning a starting
value.
apollo_beta=c(b_co2m = 0,
 b_co2h = 0,
 b_pricem = 0,
 b_priceh = 0,
 b_wdm = 0,
 b_wdh = 0,
 b_ttm = 0,
 b_tth = 0)
 #'COMPLETE THE LIST HERE')

Step 8: Define which parameters (as initialised above) should kept
fixed during estimation (in quotes); if none, keep empty
apollo_fixed = c()

Step 9: Checkpoint for model inputs
apollo_inputs = apollo_validateInputs()

Step 10: Define model and likelihood function
apollo_probabilities=function(apollo_beta, apollo_inputs,
functionality="estimate"){

 ### Attach dataset inputs and detach after function exit
 apollo_attach(apollo_beta, apollo_inputs)
 on.exit(apollo_detach(apollo_beta, apollo_inputs))

 ### Create list of choice probabilities P
 P = list()

 ### List of utility functions: these must use the same names as in
mnl_settings (see below), order is irrelevant
 V = list()
 # USER ACTION: Define utility function for alternative 1
 V[["ALT1"]] = b_co2m * Var12.1 + b_co2h * Var13.1 + b_pricem * Var22.1 +
b_priceh * Var23.1 +
 b_wdm * Var32.1 + b_wdh * Var33.1 + b_ttm * Var42.1 + b_tth * Var43.1

 # USER ACTION: Define utility function for alternative 2
 V[["ALT2"]] = b_co2m * Var12.2 + b_co2h * Var13.2 + b_pricem * Var22.2 +
b_priceh * Var23.2 +
 b_wdm * Var32.2 + b_wdh * Var33.2 + b_ttm * Var42.2 + b_tth * Var43.2

 ### Define settings for MNL model component
 mnl_settings = list(
 # USER ACTION: Attach utility functions to the alternatives in your
dataset
 alternatives = c(ALT1=1, ALT2=2),
 # USER ACTION: Define which alternatives are "available" in each
choice task; in our study, all alternatives are "available"
 avail = list(ALT1=1, ALT2=1),
 # USER ACTION: Specify the column containing the chosen alternative;
beware, no dummies are used (!)
 choiceVar = choice,
 # USER ACTION: Attach list of utility functions
 utilities = V
)

 ### Compute choice probabilities using MNL model
 P[["model"]] = apollo_mnl(mnl_settings, functionality) #
functionality="estimate" as the parameters will be updated for estimating
the MNL model

 ### Take product across observations for same individual (i.e.,
considering the panel structure of the data)
 P = apollo_panelProd(P, apollo_inputs, functionality)

 ### Prepare and return outputs of function
 P = apollo_prepareProb(P, apollo_inputs, functionality)
 return(P)
}

Step 11: Model estimation

model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities,
apollo_inputs)

Step 12: Print model output with two-sided p-values
Note: if one-sided p-values are needed, set "printPVal=1" (p-values
are not reported if set to "0")
modelOutput_setting=list(printPVal=2)
apollo_modelOutput(model, modelOutput_setting)

Save model output with two-sided p-values
apollo_saveOutput(model, modelOutput_setting)

Code MNL with interactions with categorical variables only
Step 1: Clear memory
rm(list = ls())

Step 2: Set working directory for R initialization
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

Step 3: Load Apollo library
library(apollo)

Step 4: Initialise Apollo code
apollo_initialise()

Step 5: Set core controls
ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo_control = list(
 # USER ACTION: Specify model name
 ## Note: Change the model name for every model that you run
 modelName = "MNL_I",
 # USER ACTION: Provide model description
 ## Note: Change the model description to reflect the current model
 modelDescr = "MNL with interaction effects",
 # USER ACTION: Specify the column with the respondent id
 indivID = "peep_ID",
 # USER ACTION: Set path to the folder on your PC where the model results
will be stored
 ## Note: Use the "outputs" folder that was created by the pre-
processing syntax
 outputDirectory = "outputs"
)

Step 6: Load data
Set path to the folder on your PC where the dataset is stored
path_dataset = paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies-
2.csv")

Load dataset into global environment
database = read.csv(path_dataset, header=TRUE)

Step 7: Initialize all parameters that needs to be estimated in your
MNL model
USER ACTION: The parameters for the attribute "Effectiveness" are
defined. Please,
complete the list with parameters that need to be
estimated. Provide
names for each parameter following by assigning a starting
value.
apollo_beta=c(b_co2m = 0,
 b_co2h = 0,
 b_pricem = 0,
 b_priceh = 0,
 b_wdm = 0,
 b_wdh = 0,
 b_ttm = 0,
 b_tth = 0,
 b_co2m_treehugger = 0,
 b_co2h_treehugger = 0,
 b_pricem_rich = 0,
 b_priceh_rich = 0,
 b_wdm_age = 0,
 b_wdh_age = 0)

Step 8: Define which parameters (as initialized above) should kept
fixed during estimation (in quotes); if none, keep empty
apollo_fixed = c()

Step 9: Checkpoint for model inputs
apollo_inputs = apollo_validateInputs()

Step 10: Define model and likelihood function
apollo_probabilities=function(apollo_beta, apollo_inputs,
functionality="estimate"){

 ### Attach dataset inputs and detach after function exit
 apollo_attach(apollo_beta, apollo_inputs)
 on.exit(apollo_detach(apollo_beta, apollo_inputs))

 ### Create list of choice probabilities P
 P = list()

 ### List of utility functions: these must use the same names as in
mnl_settings (see below), order is irrelevant
 V = list()
 # USER ACTION: Define utility function for alternative 1
 V[["ALT1"]] = (b_co2m * Var12.1 + b_co2h * Var13.1 + b_pricem * Var22.1
+ b_priceh * Var23.1 + b_wdm * Var32.1 + b_wdh * Var33.1 + b_ttm * Var42.1
+ b_tth * Var43.1 +
 b_co2m_treehugger * d26 * Var12.1 + b_co2h_treehugger *
d26 * Var13.1 + b_pricem_rich * d30 * Var22.1 + b_priceh_rich * d30 *
Var23.1 +
 b_wdm_age * d27 * Var32.1 + b_wdh_age * d27 * Var33.1)

 # USER ACTION: Define utility function for alternative 2

 V[["ALT2"]] =(b_co2m * Var12.2 + b_co2h * Var13.2 + b_pricem * Var22.2
+ b_priceh * Var23.2 + b_wdm * Var32.2 + b_wdh * Var33.2 + b_ttm * Var42.2
+ b_tth * Var43.2 +
 b_co2m_treehugger * d26 * Var12.2 + b_co2h_treehugger *
d26 * Var13.2 + b_pricem_rich * d30 * Var22.2 + b_priceh_rich * d30 *
Var23.2 +
 b_wdm_age * d27 * Var32.2 + b_wdh_age * d27 * Var33.2)

 ### Define settings for MNL model component
 mnl_settings = list(
 # USER ACTION: Attach utility functions to the alternatives in your
dataset
 alternatives = c(ALT1=1, ALT2=2),
 # USER ACTION: Define which alternatives are "available" in each
choice task; in our study, all alternatives are "available"
 avail = list(ALT1=1, ALT2=1),
 # USER ACTION: Specify the column containing the chosen alternative;
beware, no dummies are used (!)
 choiceVar = choice,
 # USER ACTION: Attach list of utility functions
 utilities = V
)

 ### Compute choice probabilities using MNL model
 P[["model"]] = apollo_mnl(mnl_settings, functionality) #
functionality="estimate" as the parameters will be updated for estimating
the MNL model

 ### Take product across observations for same individual (i.e.,
considering the panel structure of the data)
 P = apollo_panelProd(P, apollo_inputs, functionality)

 ### Prepare and return outputs of function
 P = apollo_prepareProb(P, apollo_inputs, functionality)
 return(P)
}

Step 11: Model estimation
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities,
apollo_inputs)

Step 12: Print model output with two-sided p-values
Note: if one-sided p-values are needed, set "printPVal=1" (p-values
are not reported if set to "0")
modelOutput_setting=list(printPVal=2)
apollo_modelOutput(model, modelOutput_setting)

Save model output with two-sided p-values
apollo_saveOutput(model, modelOutput_setting)

Code Latent Class with categorical variables only
Step 1: Clear memory

rm(list = ls())

Step 2: Set working directory for R initialization
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

Step 3: Load Apollo library
library(apollo)

Step 4: Initialise Apollo code
apollo_initialise()

Step 5: Set core controls
ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo_control = list(
 # USER ACTION: Specify model name
 ## Note: Change the model name for every model that you run
 modelName = "lc_model",
 # USER ACTION: Provide model description
 ## Note: Change the model description to reflect the current model
 modelDescr = "this estimates lc",
 # USER ACTION: Specify the column with the respondent id
 indivID = "peep_ID",
 # Define number of cores used during estimation (used to speed up
estimation time)
 nCores = 5,
 # Define seed used for any random number generation
 seed = 100,
 # USER ACTION: Set path to the folder on your PC where the model results
will be stored
 ## Note: Use the "outputs" folder that was created by the pre-
processing syntax
 outputDirectory =
paste(getwd(),'outputs',"practicum_lcmodel_3class_covar",sep=.Platform$fil
e.sep)
)

Step 6: Load data
Set path to the folder on your PC where the dataset is stored
path_data =
paste(getwd(),"data_with_dummies_final.csv",sep=.Platform$file.sep)
Load dataset into global environment
database = read.csv(path_data, header=TRUE)

Step 7: Initialise all parameters that needs to be estimated in your
MNL model
USER ACTION: Define the (1) class-specific and (2) class membership
parameters
followed by assigning a starting value. The class-specific
alternative specific constant for the opt-out option and
the
constants for the class membership models are already
defined.
Please, complete the list with the parameters that are
missing.

Provide names for each parameter following by assigning a
starting value.
apollo_beta=c(# Class 1
 b_co2m_1 = -0.1,
 b_co2h_1 = 0,
 b_pricem_1 = 0,
 b_priceh_1 = 0,
 b_wdm_1 = 0,
 b_wdh_1 = 0,
 b_ttm_1 = 0,
 b_tth_1 = 0,

 # Class 2
 b_co2m_2 = 0.1,
 b_co2h_2 = 0,
 b_pricem_2 = 0,
 b_priceh_2 = 0,
 b_wdm_2 = 0,
 b_wdh_2 = 0,
 b_ttm_2 = 0,
 b_tth_2 = 0,

 # Class membership - class 1
 delta_1 = -0.1,
 g_treehugger_1 = 0,
 g_ageold_1 = 0,
 g_gender_1 = 0,
 g_educated_1 = 0,
 g_rich_1 = 0,
 # Class membership - class 2
 delta_2 = 0,
 g_treehugger_2 = 0,
 g_ageold_2 = 0,
 g_gender_2 = 0,
 g_educated_2 = 0,
 g_rich_2 = 0)

Step 8
USER ACTION: Complete the list with parameters (as initialised above)
that
should be kept fixed during estimation (in quotes)
apollo_fixed = c("delta_2", "g_treehugger_2", "g_ageold_2", "g_gender_2",
"g_educated_2", "g_rich_2")

Step 9: Define class membership model
apollo_lcPars=function(apollo_beta, apollo_inputs){
 lcpars = list()
 ## USER ACTION: Complete the empty lists by specifying the missing
class-specific parameters
 ## which are needed for the class-specific utility
functions

 lcpars[["b_co2m"]] = list(b_co2m_1, b_co2m_2)

 lcpars[["b_co2h"]] = list(b_co2h_1, b_co2h_2)
 lcpars[["b_pricem"]] = list(b_pricem_1, b_pricem_2)
 lcpars[["b_priceh"]] = list(b_priceh_1, b_priceh_2)
 lcpars[["b_wdm"]] = list(b_wdm_1, b_wdm_2)
 lcpars[["b_wdh"]] = list(b_wdh_1, b_wdh_2)
 lcpars[["b_ttm"]] = list(b_ttm_1, b_ttm_2)
 lcpars[["b_tth"]] = list(b_tth_1, b_tth_2)

 ## List of class-membership functions:
 ## These must use the same names as in classAlloc_settings (see below),
order is irrelevant
 V=list()
 # USER ACTION: Define class-membership function for class 1
 V[["class_1"]] = delta_1 + g_treehugger_1 * d26 + g_ageold_1 * d27 +
g_gender_1 * d28 + g_educated_1 * d29 + g_rich_1 * d30

 # USER ACTION: Define class-membership functions for class 2
 V[["class_2"]] = delta_2 + g_treehugger_2 * d26 + g_ageold_2 * d27 +
g_gender_2 * d28+ g_educated_2 * d29 + g_rich_2 * d30

 ## Define settings for class-membership model
 classAlloc_settings = list(
 # USER ACTION: Attach class-membership functions to the respective
classes
 classes = c(class_1=1, class_2=2),
 # USER ACTION: Define which classes are "available" in our study, all
classes are "available"
 avail = 1,
 # USER ACTION: Attach list of class-membership functions
 utilities = V
)

 lcpars[["pi_values"]] = apollo_classAlloc(classAlloc_settings)
 return(lcpars)
}

Step 10: Checkpoint for model inputs
apollo_inputs = apollo_validateInputs()

Step 11: Define model and likelihood function
apollo_probabilities=function(apollo_beta, apollo_inputs,
functionality="estimate"){

 ### Attach inputs and detach after function exit
 apollo_attach(apollo_beta, apollo_inputs)
 on.exit(apollo_detach(apollo_beta, apollo_inputs))

 ### Create list of choice probabilities P
 P = list()

 ### Define settings for MNL model component that are generic across
classes

 mnl_settings = list(
 # USER ACTION: Attach utility functions to the alternatives in your
dataset
 alternatives = c(ALT1=1, ALT2=2),
 # USER ACTION: Define which alternatives are "available" in each
choice task; in our study, all alternatives are "available"
 avail = list(ALT1=1, ALT2=1),
 # USER ACTION: Specify the column containing the chosen alternative;
beware, no dummies are used (!)
 choiceVar = choice
)

 ### List of utility functions for each latent class: these must use the
same names as in mnl_settings (see above), order is irrelevant
 # USER ACTION: Set number of latent classes you are estimating in the
model
 ## Note: You can call class-specific parameters by
NAME_PARAM[[s]]; see example in ALT3 for the class-specific
 ## alternative specific constant
 for(s in 1:2){
 V=list()
 # USER ACTION: Define utility function for alternative 1 for class "s"
 V[["ALT1"]] = b_co2m[[s]] * Var12.1 + b_co2h[[s]] * Var13.1 +
b_pricem[[s]] * Var22.1 + b_priceh[[s]] * Var23.1 +
 b_ttm[[s]] * Var42.1 + b_tth[[s]] * Var43.1 + b_wdm[[s]] * Var32.1 +
b_wdh[[s]] * Var33.1

 # USER ACTION: Define utility function for alternative 2 for class "s"
 V[["ALT2"]] = b_co2m[[s]] * Var12.2 + b_co2h[[s]] * Var13.2 +
b_pricem[[s]] * Var22.2 + b_priceh[[s]] * Var23.2 +
 b_ttm[[s]] * Var42.2 + b_tth[[s]] * Var43.2 + b_wdm[[s]] * Var32.2 +
b_wdh[[s]] * Var33.2

 mnl_settings$utilities = V
 mnl_settings$componentName = paste0("Class_",s)

 ### Compute within-class choice probabilities using MNL model
 P[[paste0("Class_",s)]] = apollo_mnl(mnl_settings, functionality)

 ### Take product across observations for same individual (i.e.,
considering the panel structure of the data)
 P[[paste0("Class_",s)]] = apollo_panelProd(P[[paste0("Class_",s)]],
apollo_inputs ,functionality)
 }

 ### Compute latent class model probabilities
 lc_settings = list(inClassProb = P, classProb=pi_values)
 P[["model"]] = apollo_lc(lc_settings, apollo_inputs, functionality)

 ### Prepare and return outputs of function
 P = apollo_prepareProb(P, apollo_inputs, functionality)
 return(P)
}

Step 12: Searching for starting value (recommended to ensure model
convergence!)
apollo_beta = apollo_searchStart(apollo_beta,
 apollo_fixed,
 apollo_probabilities,
 apollo_inputs,
 searchStart_settings=list(nCandidates=2))

Step 13: Model estimation
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities,
apollo_inputs)

Step 14: Print model output with two-sided p-values
Note: if one-sided p-values are needed, set "printPVal=1" (p-values
are not reported if set to "0")
modelOutput_setting=list(printPVal=2)
apollo_modelOutput(model, modelOutput_setting)

Save model output with two-sided p-values
apollo_saveOutput(model, modelOutput_setting)

Code Mixed Logit with categorical variables only
Step 1: Clear memory
rm(list = ls())

Step 2: Set working directory for R initialization
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

Step 3: Load Apollo library
library(apollo)

Step 4: Initialise Apollo code
apollo_initialise()

Step 5: Set core controls
ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo_control = list(
 # USER ACTION: Specify model name
 ## Note: Change the model name for every model that you run
 modelName = "mixedLogitModel",
 # USER ACTION: Provide model description
 ## Note: Change the model description to reflect the current model
 modelDescr = "mixing",
 # USER ACTION: Specify the column with the respondent id
 indivID = "peep_ID",
 # USER ACTION: Set logical variable to activate estimation of random
parameters
 mixing = TRUE,
 # Define number of cores used during estimation (used to speed up
estimation time)
 nCores = 5,

 # USER ACTION: Set path to the folder on your PC where the model results
will be stored
 ## Note: Use the "outputs" folder that was created by the pre-
processing syntax
 outputDirectory = "outputs"
)

Step 6: Load data
Set path to directory on your PC where the dataset is stored
path_data =
paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies_final.csv")
Load dataset into global environment
database = read.csv(path_data, header=TRUE)
database <- database[!is.na(database$choice),]

Step 7: Initialise all parameters that needs to be estimated in your
Mixed Logit model
USER ACTION: Define the (1) mu parameters that estimate the sample mean,
and
(2) sigma parameters that estimate the sample
distribution
Please, complete the list with the parameters that are
missing.
Provide names for each parameter following by assigning a
starting value.
apollo_beta=c(
 mu_co2m = 0,
 sigma_co2m = 0,
 mu_co2h = 0,
 sigma_co2h = 0,
 mu_pricem = 0,
 sigma_pricem = 0,
 mu_priceh = 0,
 sigma_priceh = 0,
 mu_wdm = 0,
 sigma_wdm = 0,
 mu_wdh = 0,
 sigma_wdh = 0,
 mu_ttm = 0,
 sigma_ttm = 0,
 mu_tth = 0,
 sigma_tth = 0)
Step 8:
USER ACTION: Complete the list with parameters (as initialised above)
that
should be kept fixed during estimation (in quotes); if
none, keep empty
apollo_fixed = c()

Step 9: Set parameters for generating draws
USER ACTION: Define the number of one random variable for each sigma in
apollo_beta
Use the command line interNormDraws

apollo_draws = list(
 interDrawsType = "mlhs",
 interNDraws = 200,
 interUnifDraws = c(),
 interNormDraws = c("inter_1","inter_2","inter_3","inter_4","inter_5",
"inter_6", "inter_7", "inter_8"),
 intraDrawsType = "mlhs",
 intraNDraws = 0,
 intraUnifDraws = c(),
 intraNormDraws = c()
)

Step 10: Create random parameters
USER ACTION: Write every random coefficient function
If necessary check the lecture slides
apollo_randCoeff = function(apollo_beta, apollo_inputs){
 randcoeff = list()

 randcoeff[["b_co2m"]] = mu_co2m + sigma_co2m * inter_1
 randcoeff[["b_co2h"]] = mu_co2h + sigma_co2h * inter_2
 randcoeff[["b_pricem"]] = mu_pricem + sigma_pricem* inter_3
 randcoeff[["b_priceh"]] = mu_priceh + sigma_priceh* inter_4
 randcoeff[["b_wdm"]] = mu_wdm + sigma_wdm* inter_5
 randcoeff[["b_wdh"]] = mu_wdh + sigma_wdh* inter_6
 randcoeff[["b_ttm"]] = mu_ttm + sigma_ttm* inter_7
 randcoeff[["b_tth"]] = mu_tth + sigma_tth* inter_8

 return(randcoeff)
}

Step 11: Checkpoint for model inputs
apollo_inputs = apollo_validateInputs()

Step 12: Define model and likelihood function
apollo_probabilities=function(apollo_beta, apollo_inputs,
functionality="estimate"){

 ### Attach dataset inputs and detach after function exit
 apollo_attach(apollo_beta, apollo_inputs)
 on.exit(apollo_detach(apollo_beta, apollo_inputs))

 ### Create list of choice probabilities P
 P = list()

 ### List of utility functions: these must use the same names as in
mnl_settings (see below), order is irrelevant
 V = list()

 # USER ACTION: Define utility function for alternative 1
 # Code "effectiveness" and "risk false negative" attributes as numerical
variables
 V[["ALT1"]] = (b_co2m * Var12.1 + b_co2h * Var13.1 + b_pricem * Var22.1
+ b_priceh * Var23.1 + b_wdm * Var32.1
 + b_wdh * Var33.1 + b_ttm * Var42.1 + b_tth * Var43.1)

 # USER ACTION: Define utility function for alternative 2
 # Code "effectiveness" and "risk false negative" attributes as numerical
variables
 V[["ALT2"]] = (b_co2m * Var12.2 + b_co2h * Var13.2 + b_pricem * Var22.2
+ b_priceh * Var23.2 + b_wdm * Var32.2
 + b_wdh * Var33.2 + b_ttm * Var42.2 + b_tth * Var43.2)

 ### Define settings for MNL model component
 mnl_settings = list(
 # USER ACTION: Attach utility function to the choice alternative in
your dataset
 alternatives = c(ALT1=1, ALT2=2),
 # USER ACTION: Define which alternatives are "available" in each
choice task
 # In our study, all alternatives are "available"
 avail = 1,
 # USER ACTION: Specify the column containing the chosen alternative
 choiceVar = choice,
 # USER ACTION: Attach list of utility functions
 utilities = V
)

 ### Compute choice probabilities using MNL model
 #### functionality="estimate" as the parameters will be updated for
estimating the MNL model
 P[["model"]] = apollo_mnl(mnl_settings, functionality)

 ### Take product across observations for same individual
 ### (i.e., considering the panel structure of the data)
 P = apollo_panelProd(P, apollo_inputs, functionality)

 ## Average across inter-individual draws
 P = apollo_avgInterDraws(P, apollo_inputs, functionality)

 ### Prepare and return outputs of function
 P = apollo_prepareProb(P, apollo_inputs, functionality)
 return(P)
}

Step 13: Model estimation
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities,
apollo_inputs)

Step 14: Print model output with two-sided p-values
Note: if one-sided p-values are needed, set "printPVal=1" (p-values
are not reported if set to "0")
modelOutput_setting=list(printPVal=2)
apollo_modelOutput(model, modelOutput_setting)

Save model output with two-sided p-values
apollo_saveOutput(model, modelOutput_setting)

Step 15: Estimate individual coefficients conditional on choice
sequence
conditionals = apollo_conditionals(model,
 apollo_probabilities,
 apollo_inputs)

Set path to directory on your PC where the conditionals will be stored
path_cond =
paste0(apollo_control$outputDirectory,sep=.Platform$file.sep,"conditionals
.RDS")
Save conditionals
saveRDS(conditionals, file = path_cond)

Code MNL basic with continuous variables
Step 1: Clear memory
rm(list = ls())

Step 2: Set working directory for R initialization
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

Step 3: Load Apollo library
library(apollo)

Step 4: Initialize Apollo code
apollo_initialise()

Step 5: Set core controls
ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo_control = list(
 # USER ACTION: Specify model name
 ## Note: Change the model name for every model that you run
 modelName = "MNL_basic",
 # USER ACTION: Provide model description
 ## Note: Change the model description to reflect the current model
 modelDescr = "basic model",
 # USER ACTION: Specify the column with the respondent id
 indivID = "peep_ID",
 # USER ACTION: Set path to the folder on your PC where the model results
will be stored
 ## Note: Use the "outputs" folder that was created by the pre-
processing syntax
 outputDirectory ="outputs"
)

Step 6: Load data
Set path to the folder on your PC where the dataset is stored
path_dataset = paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies-
2.csv")

Load dataset into global environment

database = read.csv(path_dataset, header=TRUE)

Step 7: Initialize all parameters that needs to be estimated in your
MNL model
USER ACTION: The parameters for the attribute "Effectiveness" are
defined. Please,
complete the list with parameters that need to be
estimated. Provide
names for each parameter following by assigning a starting
value.
apollo_beta=c(b_co2m = 0,
 b_co2h = 0,
 b_price = 0,
 b_wd = 0,
 b_tt = 0)
 #'COMPLETE THE LIST HERE')

Step 8: Define which parameters (as initialised above) should kept
fixed during estimation (in quotes); if none, keep empty
apollo_fixed = c()

Step 9: Checkpoint for model inputs
apollo_inputs = apollo_validateInputs()

Step 10: Define model and likelihood function
apollo_probabilities=function(apollo_beta, apollo_inputs,
functionality="estimate"){

 ### Attach dataset inputs and detach after function exit
 apollo_attach(apollo_beta, apollo_inputs)
 on.exit(apollo_detach(apollo_beta, apollo_inputs))

 ### Create list of choice probabilities P
 P = list()

 ### List of utility functions: these must use the same names as in
mnl_settings (see below), order is irrelevant
 V = list()
 # USER ACTION: Define utility function for alternative 1
 V[["ALT1"]] = b_co2m * Var12.1 + b_co2h * Var13.1 + b_price * price1 +
b_wd * wd1 + b_tt * tt1

 # USER ACTION: Define utility function for alternative 2
 V[["ALT2"]] = b_co2m * Var12.2 + b_co2h * Var13.2 + b_price * price2 +
b_wd * wd2 + b_tt * tt2

 ### Define settings for MNL model component
 mnl_settings = list(
 # USER ACTION: Attach utility functions to the alternatives in your
dataset
 alternatives = c(ALT1=1, ALT2=2),
 # USER ACTION: Define which alternatives are "available" in each
choice task; in our study, all alternatives are "available"
 avail = list(ALT1=1, ALT2=1),

 # USER ACTION: Specify the column containing the chosen alternative;
beware, no dummies are used (!)
 choiceVar = choice,
 # USER ACTION: Attach list of utility functions
 utilities = V
)

 ### Compute choice probabilities using MNL model
 P[["model"]] = apollo_mnl(mnl_settings, functionality) #
functionality="estimate" as the parameters will be updated for estimating
the MNL model

 ### Take product across observations for same individual (i.e.,
considering the panel structure of the data)
 P = apollo_panelProd(P, apollo_inputs, functionality)

 ### Prepare and return outputs of function
 P = apollo_prepareProb(P, apollo_inputs, functionality)
 return(P)
}

Step 11: Model estimation
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities,
apollo_inputs)

Step 12: Print model output with two-sided p-values
Note: if one-sided p-values are needed, set "printPVal=1" (p-values
are not reported if set to "0")
modelOutput_setting=list(printPVal=2)
apollo_modelOutput(model, modelOutput_setting)

Save model output with two-sided p-values
apollo_saveOutput(model, modelOutput_setting)

Code MNL with interactions with continuous variables
Step 1: Clear memory
rm(list = ls())

Step 2: Set working directory for R initialization
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

Step 3: Load Apollo library
library(apollo)

Step 4: Initialise Apollo code
apollo_initialise()

Step 5: Set core controls
ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo_control = list(
 # USER ACTION: Specify model name

 ## Note: Change the model name for every model that you run
 modelName = "MNL_I",
 # USER ACTION: Provide model description
 ## Note: Change the model description to reflect the current model
 modelDescr = "MNL with interaction effects",
 # USER ACTION: Specify the column with the respondent id
 indivID = "peep_ID",
 # USER ACTION: Set path to the folder on your PC where the model results
will be stored
 ## Note: Use the "outputs" folder that was created by the pre-
processing syntax
 outputDirectory = "outputs"
)

Step 6: Load data
Set path to the folder on your PC where the dataset is stored
path_dataset =
paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies_final.csv")

Load dataset into global environment
database = read.csv(path_dataset, header=TRUE)

Step 7: Initialize all parameters that needs to be estimated in your
MNL model
USER ACTION: The parameters for the attribute "Effectiveness" are
defined. Please,
complete the list with parameters that need to be
estimated. Provide
names for each parameter following by assigning a starting
value.
apollo_beta=c(b_co2m = 0,
 b_co2h = 0,
 b_price = 0,
 b_wd = 0,
 b_tt = 0,
 b_co2m_treehugger = 0,
 b_co2h_treehugger = 0,
 b_price_rich = 0,
 b_wd_age = 0)

Step 8: Define which parameters (as initialized above) should kept
fixed during estimation (in quotes); if none, keep empty
apollo_fixed = c()

Step 9: Checkpoint for model inputs
apollo_inputs = apollo_validateInputs()

Step 10: Define model and likelihood function
apollo_probabilities=function(apollo_beta, apollo_inputs,
functionality="estimate"){

 ### Attach dataset inputs and detach after function exit
 apollo_attach(apollo_beta, apollo_inputs)
 on.exit(apollo_detach(apollo_beta, apollo_inputs))

 ### Create list of choice probabilities P
 P = list()

 ### List of utility functions: these must use the same names as in
mnl_settings (see below), order is irrelevant
 V = list()
 # USER ACTION: Define utility function for alternative 1
 V[["ALT1"]] = (b_co2m * Var12.1 + b_co2h * Var13.1 + b_price * price1 +
b_wd * wd1 + b_tt * tt1 +
 b_co2m_treehugger * d26 * Var12.1 + b_co2h_treehugger *
d26 * Var13.1 + b_price_rich * d30 * price1 +
 b_wd_age * d27 * wd1)

 # USER ACTION: Define utility function for alternative 2
 V[["ALT2"]] =(b_co2m * Var12.2 + b_co2h * Var13.2 + b_price * price2 +
b_wd * wd2 + b_tt * tt2 +
 b_co2m_treehugger * d26 * Var12.2 + b_co2h_treehugger *
d26 * Var13.2 + b_price_rich * d30 * price2 +
 b_wd_age * d27 * wd2)

 ### Define settings for MNL model component
 mnl_settings = list(
 # USER ACTION: Attach utility functions to the alternatives in your
dataset
 alternatives = c(ALT1=1, ALT2=2),
 # USER ACTION: Define which alternatives are "available" in each
choice task; in our study, all alternatives are "available"
 avail = list(ALT1=1, ALT2=1),
 # USER ACTION: Specify the column containing the chosen alternative;
beware, no dummies are used (!)
 choiceVar = choice,
 # USER ACTION: Attach list of utility functions
 utilities = V
)

 ### Compute choice probabilities using MNL model
 P[["model"]] = apollo_mnl(mnl_settings, functionality) #
functionality="estimate" as the parameters will be updated for estimating
the MNL model

 ### Take product across observations for same individual (i.e.,
considering the panel structure of the data)
 P = apollo_panelProd(P, apollo_inputs, functionality)

 ### Prepare and return outputs of function
 P = apollo_prepareProb(P, apollo_inputs, functionality)
 return(P)
}

Step 11: Model estimation
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities,
apollo_inputs)

Step 12: Print model output with two-sided p-values
Note: if one-sided p-values are needed, set "printPVal=1" (p-values
are not reported if set to "0")
modelOutput_setting=list(printPVal=2)
apollo_modelOutput(model, modelOutput_setting)

Save model output with two-sided p-values
apollo_saveOutput(model, modelOutput_setting)

Code Latent Class with continuous variables
Step 1: Clear memory
rm(list = ls())

Step 2: Set working directory for R initialization
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

Step 3: Load Apollo library
library(apollo)

Step 4: Initialise Apollo code
apollo_initialise()

Step 5: Set core controls
ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo_control = list(
 # USER ACTION: Specify model name
 ## Note: Change the model name for every model that you run
 modelName = "first_lc",
 # USER ACTION: Provide model description
 ## Note: Change the model description to reflect the current model
 modelDescr = "this estimates lc",
 # USER ACTION: Specify the column with the respondent id
 indivID = "peep_ID",
 # Define number of cores used during estimation (used to speed up
estimation time)
 nCores = 5,
 # Define seed used for any random number generation
 seed = 100,
 # USER ACTION: Set path to the folder on your PC where the model results
will be stored
 ## Note: Use the "outputs" folder that was created by the pre-
processing syntax
 outputDirectory =
paste(getwd(),'outputs',"practicum_lcmodel_3class_covar",sep=.Platform$fil
e.sep)
)

Step 6: Load data
Set path to the folder on your PC where the dataset is stored
path_data =
paste(getwd(),"data_with_dummies_final.csv",sep=.Platform$file.sep)

Load dataset into global environment
database = read.csv(path_data, header=TRUE)

Step 7: Initialise all parameters that needs to be estimated in your
MNL model
USER ACTION: Define the (1) class-specific and (2) class membership
parameters
followed by assigning a starting value. The class-specific
alternative specific constant for the opt-out option and
the
constants for the class membership models are already
defined.
Please, complete the list with the parameters that are
missing.
Provide names for each parameter following by assigning a
starting value.
apollo_beta=c(# Class 1
 b_co2m_1 = -0.1,
 b_co2h_1 = 0,
 b_price_1 = 0,
 b_wd_1 = 0,
 b_tt_1 = 0,

 # Class 2
 b_co2m_2 = 0,
 b_co2h_2 = 0,
 b_price_2 = 0,
 b_wd_2 = 0,
 b_tt_2 = 0,

 # Class membership - class 1
 delta_1 = -0.1,
 g_treehugger_1 = 0,
 g_ageold_1 = 0,
 g_gender_1 = 0,
 g_educated_1 = 0,
 g_rich_1 = 0,
 # Class membership - class 2
 delta_2 = 0,
 g_treehugger_2 = 0,
 g_ageold_2 = 0,
 g_gender_2 = 0,
 g_educated_2 = 0,
 g_rich_2 = 0)

Step 8
USER ACTION: Complete the list with parameters (as initialised above)
that
should be kept fixed during estimation (in quotes)
apollo_fixed = c("delta_2", "g_treehugger_2", "g_ageold_2", "g_gender_2",
"g_educated_2", "g_rich_2")

Step 9: Define class membership model
apollo_lcPars=function(apollo_beta, apollo_inputs){
 lcpars = list()
 ## USER ACTION: Complete the empty lists by specifying the missing
class-specific parameters
 ## which are needed for the class-specific utility
functions

 lcpars[["b_co2m"]] = list(b_co2m_1, b_co2m_2)
 lcpars[["b_co2h"]] = list(b_co2h_1, b_co2h_2)
 lcpars[["b_price"]] = list(b_price_1, b_price_2)
 lcpars[["b_wd"]] = list(b_wd_1, b_wd_2)
 lcpars[["b_tt"]] = list(b_tt_1, b_tt_2)

 ## List of class-membership functions:
 ## These must use the same names as in classAlloc_settings (see below),
order is irrelevant
 V=list()
 # USER ACTION: Define class-membership function for class 1
 V[["class_1"]] = delta_1 + g_treehugger_1 * d26 + g_ageold_1 * d27 +
g_gender_1 * d28 + g_educated_1 * d29 + g_rich_1 * d30

 # USER ACTION: Define class-membership functions for class 2
 V[["class_2"]] = delta_2 + g_treehugger_2 * d26 + g_ageold_2 * d27 +
g_gender_2 * d28+ g_educated_2 * d29 + g_rich_2 * d30

 ## Define settings for class-membership model
 classAlloc_settings = list(
 # USER ACTION: Attach class-membership functions to the respective
classes
 classes = c(class_1=1, class_2=2),
 # USER ACTION: Define which classes are "available" in our study, all
classes are "available"
 avail = 1,
 # USER ACTION: Attach list of class-membership functions
 utilities = V
)

 lcpars[["pi_values"]] = apollo_classAlloc(classAlloc_settings)
 return(lcpars)
}

Step 10: Checkpoint for model inputs
apollo_inputs = apollo_validateInputs()

Step 11: Define model and likelihood function
apollo_probabilities=function(apollo_beta, apollo_inputs,
functionality="estimate"){

 ### Attach inputs and detach after function exit
 apollo_attach(apollo_beta, apollo_inputs)
 on.exit(apollo_detach(apollo_beta, apollo_inputs))

 ### Create list of choice probabilities P
 P = list()

 ### Define settings for MNL model component that are generic across
classes
 mnl_settings = list(
 # USER ACTION: Attach utility functions to the alternatives in your
dataset
 alternatives = c(ALT1=1, ALT2=2),
 # USER ACTION: Define which alternatives are "available" in each
choice task; in our study, all alternatives are "available"
 avail = list(ALT1=1, ALT2=1),
 # USER ACTION: Specify the column containing the chosen alternative;
beware, no dummies are used (!)
 choiceVar = choice
)

 ### List of utility functions for each latent class: these must use the
same names as in mnl_settings (see above), order is irrelevant
 # USER ACTION: Set number of latent classes you are estimating in the
model
 ## Note: You can call class-specific parameters by
NAME_PARAM[[s]]; see example in ALT3 for the class-specific
 ## alternative specific constant
 for(s in 1:2){
 V=list()
 # USER ACTION: Define utility function for alternative 1 for class "s"
 V[["ALT1"]] = b_co2m[[s]] * Var12.1 + b_co2h[[s]] * Var13.1 +
b_price[[s]] * price1 + b_tt[[s]] * tt1 + b_wd[[s]] * wd1

 # USER ACTION: Define utility function for alternative 2 for class
"s"
 V[["ALT2"]] = b_co2m[[s]] * Var12.2 + b_co2h[[s]] * Var13.2 +
b_price[[s]] * price2 + b_tt[[s]] * tt2 + b_wd[[s]] * wd2

 mnl_settings$utilities = V
 mnl_settings$componentName = paste0("Class_",s)

 ### Compute within-class choice probabilities using MNL model
 P[[paste0("Class_",s)]] = apollo_mnl(mnl_settings, functionality)

 ### Take product across observations for same individual (i.e.,
considering the panel structure of the data)
 P[[paste0("Class_",s)]] = apollo_panelProd(P[[paste0("Class_",s)]],
apollo_inputs ,functionality)
 }

 ### Compute latent class model probabilities
 lc_settings = list(inClassProb = P, classProb=pi_values)
 P[["model"]] = apollo_lc(lc_settings, apollo_inputs, functionality)

 ### Prepare and return outputs of function

 P = apollo_prepareProb(P, apollo_inputs, functionality)
 return(P)
}

Step 12: Searching for starting value (recommended to ensure model
convergence!)
apollo_beta = apollo_searchStart(apollo_beta,
 apollo_fixed,
 apollo_probabilities,
 apollo_inputs,
 searchStart_settings=list(nCandidates=2))

Step 13: Model estimation
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities,
apollo_inputs)

Step 14: Print model output with two-sided p-values
Note: if one-sided p-values are needed, set "printPVal=1" (p-values
are not reported if set to "0")
modelOutput_setting=list(printPVal=2)
apollo_modelOutput(model, modelOutput_setting)

Save model output with two-sided p-values
apollo_saveOutput(model, modelOutput_setting)

Code Mixed Logit with continuous variables
Step 1: Clear memory
rm(list = ls())

Step 2: Set working directory for R initialization
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

Step 3: Load Apollo library
library(apollo)

Step 4: Initialise Apollo code
apollo_initialise()

Step 5: Set core controls
ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo_control = list(
 # USER ACTION: Specify model name
 ## Note: Change the model name for every model that you run
 modelName = "mixedLogitModel",
 # USER ACTION: Provide model description
 ## Note: Change the model description to reflect the current model
 modelDescr = "mixing",
 # USER ACTION: Specify the column with the respondent id
 indivID = "peep_ID",
 # USER ACTION: Set logical variable to activate estimation of random
parameters

 mixing = TRUE,
 # Define number of cores used during estimation (used to speed up
estimation time)
 nCores = 5,
 # USER ACTION: Set path to the folder on your PC where the model results
will be stored
 ## Note: Use the "outputs" folder that was created by the pre-
processing syntax
 outputDirectory = "outputs"
)

Step 6: Load data
Set path to directory on your PC where the dataset is stored
path_data =
paste0(getwd(),sep=.Platform$file.sep,"data_with_dummies_final.csv")
Load dataset into global environment
database = read.csv(path_data, header=TRUE)

Step 7: Initialise all parameters that needs to be estimated in your
Mixed Logit model
USER ACTION: Define the (1) mu parameters that estimate the sample mean,
and
(2) sigma parameters that estimate the sample
distribution
Please, complete the list with the parameters that are
missing.
Provide names for each parameter following by assigning a
starting value.
apollo_beta=c(
 mu_co2m = 0,
 sigma_co2m = 0,
 mu_co2h = 0,
 sigma_co2h = 0,
 mu_price = 0,
 sigma_price = 0,
 mu_wd = 0,
 sigma_wd = 0,
 mu_tt = 0,
 sigma_tt = 0)

Step 8:
USER ACTION: Complete the list with parameters (as initialised above)
that
should be kept fixed during estimation (in quotes); if
none, keep empty
apollo_fixed = c()

Step 9: Set parameters for generating draws
USER ACTION: Define the number of one random variable for each sigma in
apollo_beta
Use the command line interNormDraws

apollo_draws = list(
 interDrawsType = "mlhs",

 interNDraws = 200,
 interUnifDraws = c(),
 interNormDraws = c("inter_1","inter_2","inter_3","inter_4","inter_5"),
 intraDrawsType = "mlhs",
 intraNDraws = 0,
 intraUnifDraws = c(),
 intraNormDraws = c()
)

Step 10: Create random parameters
USER ACTION: Write every random coefficient function
If necessary check the lecture slides
apollo_randCoeff = function(apollo_beta, apollo_inputs){
 randcoeff = list()

 randcoeff[["b_co2m"]] = mu_co2m + sigma_co2m * inter_1
 randcoeff[["b_co2h"]] = mu_co2h + sigma_co2h * inter_2
 randcoeff[["b_price"]] = mu_price + sigma_price* inter_3
 randcoeff[["b_wd"]] = mu_wd + sigma_wd* inter_4
 randcoeff[["b_tt"]] = mu_tt + sigma_tt* inter_5

 return(randcoeff)
}

Step 11: Checkpoint for model inputs
apollo_inputs = apollo_validateInputs()

Step 12: Define model and likelihood function
apollo_probabilities=function(apollo_beta, apollo_inputs,
functionality="estimate"){

 ### Attach dataset inputs and detach after function exit
 apollo_attach(apollo_beta, apollo_inputs)
 on.exit(apollo_detach(apollo_beta, apollo_inputs))

 ### Create list of choice probabilities P
 P = list()

 ### List of utility functions: these must use the same names as in
mnl_settings (see below), order is irrelevant
 V = list()

 # USER ACTION: Define utility function for alternative 1
 # Code "effectiveness" and "risk false negative" attributes as numerical
variables
 V[["ALT1"]] = b_co2m * Var12.1 + b_co2h * Var13.1 + b_price * price1 +
b_wd * wd1 + b_tt * tt1

 # USER ACTION: Define utility function for alternative 2
 # Code "effectiveness" and "risk false negative" attributes as numerical
variables
 V[["ALT2"]] = b_co2m * Var12.2 + b_co2h * Var13.2 + b_price * price2 +
b_wd * wd2 + b_tt * tt2

 ### Define settings for MNL model component
 mnl_settings = list(
 # USER ACTION: Attach utility function to the choice alternative in
your dataset
 alternatives = c(ALT1=1, ALT2=2),
 # USER ACTION: Define which alternatives are "available" in each
choice task
 # In our study, all alternatives are "available"
 avail = 1,
 # USER ACTION: Specify the column containing the chosen alternative
 choiceVar = choice,
 # USER ACTION: Attach list of utility functions
 utilities = V
)

 ### Compute choice probabilities using MNL model
 #### functionality="estimate" as the parameters will be updated for
estimating the MNL model
 P[["model"]] = apollo_mnl(mnl_settings, functionality)

 ### Take product across observations for same individual
 ### (i.e., considering the panel structure of the data)
 P = apollo_panelProd(P, apollo_inputs, functionality)

 ## Average across inter-individual draws
 P = apollo_avgInterDraws(P, apollo_inputs, functionality)

 ### Prepare and return outputs of function
 P = apollo_prepareProb(P, apollo_inputs, functionality)
 return(P)
}

Step 13: Model estimation
model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities,
apollo_inputs)

Step 14: Print model output with two-sided p-values
Note: if one-sided p-values are needed, set "printPVal=1" (p-values
are not reported if set to "0")
modelOutput_setting=list(printPVal=2)
apollo_modelOutput(model, modelOutput_setting)

Save model output with two-sided p-values
apollo_saveOutput(model, modelOutput_setting)

Step 15: Estimate individual coefficients conditional on choice
sequence
conditionals = apollo_conditionals(model,
 apollo_probabilities,
 apollo_inputs)

Set path to directory on your PC where the conditionals will be stored

path_cond =
paste0(apollo_control$outputDirectory,sep=.Platform$file.sep,"conditionals
.RDS")
Save conditionals
saveRDS(conditionals, file = path_cond)

	Bibliography
	Appendix
	Table 6 Log likelihood & Information criteria for MNL with no interaction effects
	Table 7 basic MNL with continuous variables
	Table 8 Log likelihood & Information criteria for basic continuous MNL
	Table 9 Results for Multinomial Logit model with interaction effects
	Table 10 Log likelihood & Information criteria for MNL with interaction effects
	Table 11 Estimates for Multinomial Logit model with interaction effects
	Table 12 Results for Latent class model
	Table 13 Log likelihood & Information criteria for Latent class model
	Table 14 Results for Mixed logit model
	Table 15 Log likelihood & Information criteria for Mixed Logit model
	Code MNL basic with categorical variables only
	Code MNL with interactions with categorical variables only
	Code Latent Class with categorical variables only
	Code Mixed Logit with categorical variables only
	Code MNL basic with continuous variables
	Code MNL with interactions with continuous variables
	Code Latent Class with continuous variables
	Code Mixed Logit with continuous variables

