A new way of commuting: Understanding consumer

preferences in the emerging shared micromobility market

December 4 - 2025

Aiden de Haan _
Andreas Hotvedt -

Hy-Cang Lo
Tobias Navntoft -

Introduction and selection of a product/service

Shared mobility services that offer one-time rentals of various vehicles, such as regular
bikes, E-Mopeds, and E-bikes, have become increasingly common in urban travel across Europe.
As European countries are favoring electric vehicles, and battery technology is developing and
becoming cost-competitive, this novel form of rental mobility option has become a larger part of
the product mix in the short-form transport market (micromobility market). This growth is
expected to be sustained long-term as it meets previously unmet consumer needs, e.g., when
private transport is unavailable, and public transport does not meet location needs or is unreliable.
In the Netherlands, the largest shared mobility brands include Lime, CHECK, and Felyx, with
offerings of e-mopeds and e-bikes, a sustainable alternative to the traditional gasoline mopeds that
are common in the Dutch market (Montes, Gerzinic, Veeneman, van Oort, & Hoogendoorn, 2023).

Shared micromobility is a novel and not well-understood market, this is because consumer
needs vary significantly in different subregions within each city. For example, offering e-bikes to
aregion that is well-served by trams/metros might not be a profitable venture, compared to regions
that have fewer alternatives. In addition to geographic factors, several demographic factors play a
role, e.g., older/family-oriented neighborhoods are more likely to have cars or other private options
readily available (Fu, van Lierop, & Ettema, 2024).

Studies show that 80% of individuals who typically use the shared-mobility options, such
as Lime and CHECK, tend to be within the age range of 21-40, and approximately 71% hold some
level of higher education, e.g., a bachelor’s degree or an applied science degree (Reck & Axhausen,
2021). The demographic of this age group aligns more closely with the primary uses of shared
micromobility, which is the daily commute to/from work or education (Reck & Axhausen, 2021;
Montes, Gerzinic, Veeneman, van Oort, & Hoogendoorn, 2023).

As a result, the challenge is understanding the segment is essential for ensuring profitable
ventures for firms in the shared micromobility industry. For example, which aspects of shared
micromobility do these users value, and to what extent? Is their demand mainly driven by
convenience, sustainability, price, travel time, or some combination of these factors?

To investigate this, our study uses Discrete Choice Experiments (DCEs) to analyze the
preferences of people primarily aged 18-40 in the Netherlands, as these individuals are likely to
have interacted with shared micromobility options. The focus is to analyze how important price,

travel time, and walking distance to the vehicle are, as well as how sustainable the vehicle they

use is, in terms of CO2 emissions over the vehicle's lifetime. Furthermore, we investigate whether
these preferences vary based on the income of the respondents and their self-reported sustainability
focus. Identifying whether there is heterogeneity in the target segment allows for more specific
consumer targeting and a better match of product offering. This will provide insights for

potential/existing shared micromobility firms when deciding their profit offering.

Attributes and levels: Describe how attributes and levels were derived

Price attribute: Price levels were derived from real shared mobility prices in the
Netherlands. For example, based on CHECK’s pricing of €0.35 per minute plus a €1 unlock fee, a
3 km trip typically costs €2.80-€4.50 depending on vehicle type and traffic. To reflect realistic
variation across modalities and traffic, we selected a price range of €2-€5 (see Table 1).

Sustainability attribute: The sustainability attribute was defined as the_lifecycle carbon

footprint of each shared mobility option relative to a standard gasoline moped. We chose this
relative framing for two main reasons. First, anchoring sustainability to a familiar reference point
makes the survey more intuitive for respondents, as most users have a basic sense of how polluting
a gas moped is and would not derive any meaning from raw emission values. Second, estimating
absolute CO2 emissions for electric vehicles is complex as it depends on factors such as the
electricity mix, battery and vehicle production, and supply chains. Thus, expressing sustainability
in relative terms provides a more accurate way to measure how sustainable modalities are
compared to each other (see Table 1).

Walking distance to the vehicle: Unlike public transport stops, shared mobility vehicles
can be located anywhere within the service area, and availability fluctuates throughout the day.
Users are often not in an ideal location when they start looking for a vehicle. For example, they
may be on the edge of the service area or in a high-demand area with few vehicles nearby. For this
reason, walking distance levels were chosen to represent realistic suboptimal conditions, where
users may need to walk a small to medium-long distance to find an available vehicle. By looking
at the distance of shared mobility hubs to various central stations, we found that distances range
from 100-500 meters. These walking distance levels allow respondents to evaluate situations that
closely resemble typical shared mobility use (See table 1).

Travel time: The travel time levels were chosen to reflect realistic variations for a 3 km

urban trip. In the best-case scenario, such as taking a fast moped or a car on uncongested streets,

the trip can be completed in around 5 minutes. In contrast, under heavier traffic or with slower
modalities, the same 3 km can take up to 15 minutes. By capturing this range between optimal and
congested conditions, the selected travel time levels represent the variability users commonly face

when using shared mobility services (See table 1).

Table 1 Attributes and Levels

Attribute Low Medium High

Sustainability Level 0% CO2 25% CO2 50% CO2

Price €2 €3.5 €5

Distance to Vehicle 100 250 500

Travel Time 5 10 15
Methodology

A Discrete Choice Experiment (DCE) is appropriate for this research because it allows us
to estimate the relative importance that users assign to specific attributes of shared mobility
options. By modelling choices as a function of these attributes, we can quantify how each one
affects utility and user preferences. This provides a structured and empirical way to understand the
role of sustainability relative to price, convenience, and speed in the adoption of shared mobility
services.

Each choice task contained two unlabeled mobility options: Option A and Option B,
defined solely by their attributes (see Figure 1). Respondents were required to make a forced choice
between the two alternatives, with no opt-out option provided. This is because adding an opt-out
choice would require a bigger sample size to obtain significant results, which, given the scope of
the survey collection, was not feasible.

Furthermore, we chose a non-full factorial design because it allows us to independently
estimate the effects of each attribute while avoiding the need to present respondents with every
combination, preserving statistical power and interpretability with far fewer choice profiles. To
obtain the combinations of the experimental design, we used a D-efficient design, which resulted
in 24 different choice tasks'. 12 random tasks were shown to each participant to reduce the risk of

cognitive fatigue respondents might occur if they had to answer 24 choice tasks. A fully

! Statistical identification of parameters: 8/(2-1)*3=24

randomized design was chosen instead of blocking because the expected sample size of responses,
up to about 120 respondents, would not sufficiently mitigate between-block differences.
Randomizing individual questions, therefore, reduces the risk of systematic bias and provides a
more balanced representation of respondent characteristics across the survey.

Before the final design, a pilot study was first conducted to receive estimates on the priors
of the various attributes that would then be used to make a more efficient design for the final
survey. Due to a smaller sample size of the pilot study, only the size of some coefficients was used
(e.g., price) while other coefficients were less significant but gave an indication of the direction of
the prior (e.g., CO2 emissions). Furthermore, we collected feedback on the design of the survey

and iterated our survey design to arrive at the following choice task visualization (Figure 1).

Which mobility option would you choose?
CO2 emissions are relative to a city moped.
Option A Option B
CO2 emissions ¢ 0% of moped y M
Price (3 km) €2.00 €3.50
Distance to vehicle 500 m 100 m
Travel time (3 km) 10 min 15 min

Figure 1 Example Choice Task Shown to Respondents

Before showing the choice tasks, the respondents were asked to imagine the following
hypothetical scenario: “In this survey, you will be shown a hypothetical situation: You are 3 km
away from your destination and must choose between different shared rental mobility options.
Each option varies on four attributes: 1) CO2 Emissions, 2) Price for the full 3km trip, 3) Walking
distance to the vehicle, and 4) Travel time.?

The experimental design primarily identifies the main effects of each attribute by varying
the attribute values in choice tasks. relative to competing attributes. Additionally, the survey
incorporates respondent characteristics such as age, education, gender, and income. For example,
someone with a high income might be less price sensitive. Large cross-national surveys find that
people with a higher level of education tend to acknowledge that climate change is happening and

might therefore care more about sustainability. By incorporating these respondent characteristics,

2 See appendix 2 for the full design.

the design allows for the estimation of interaction effects between demographic variables and the
sustainability attribute. These interactions help assess how factors such as education level shape

individuals’ preferences and their relative openness toward more sustainable mobility options.

Survey respondent demographics and descriptive stats

The survey included 122 respondents, most of whom were young adults: nearly half (49%)
were aged 18-24, followed by 28% aged 25-34. The gender distribution was predominantly male
(64%), with females representing 35% of the sample. Educational attainment was split mainly
between bachelor’s degree holders (38%) and those with a high-school education (37%). Income
levels were broadly dispersed, though the largest groups reported earnings below €25,000 (26%)
or between €25,000—49,999 (25%). When it came

Survey Distribution by Age Group and Gender

Categories
Age: 18-24
Age: 25-34
== Age: 55+
= Age: 45-54
" Age: 35-44
Gender: Male
mmm Gender: Female

100 1

to sustainability, 39.5% of people stated they were

80 1

“Mostly Concerned” with sustainability, 25.8%

wmm Gender: Others

stated they were neither or not concerned, and

60 1

Proportion (%)

19.4% said they were mostly unconcerned, whilst
only 3.2% said they were very concerned. Overall,
the sample consisted mostly of younger

201

participants with varying educational backgrounds,

income levels, and a 50/50 attitude towards ° Age Gender
sustainability. Figure 2 Survey Age and Gender Distribution
All demographic variables were converted into binary dummy variables by splitting the
data. Age was split into below/above age 25. Income was split into below/above 50k. Gender was
converted into Male/Female, as the “Other” category only had one response and would thus not
yield any significant evaluation.
We estimated several discrete choice models to examine respondents’ decision patterns.
As a starting point, we employed a standard multinomial logit (MNL) specification using only the
attributes included in the choice experiment. Because all attributes are categorical, reference levels
were defined to avoid multicollinearity: for each attribute, the lowest or most preferable level
served as the baseline. Specifically, the reference categories were No COz, €2, 100 meters, and 5
minutes. Another MNL model was run using continuous variables since the categorical version of

the MNL yielded almost linear results in the effects.

All other levels were coded relative to these baselines. The resulting utility function for
alternative i (where i = 1, 2) was defined as follows:

Ui = Bcoz,m CO2m; + Bcoz,n CO2h; + Pprice,3s * PTricess; + PBpist 250 - Distzsg
+ PBpist, 500 " Distsoo,i + Brime, 10 - TiMeyg; + Brime,15 - Timeys; + &

The Multinomial Logit with Interactions added the interaction of income with price and
walking distance with age and sustainability perception with Co2 choice.
U; = IBCOZ, 4x " 6024x,i + BCOZ, 2x " COZZx,i + ﬁprl’ce,3.5 : price3_5,l- + lgprice,s : prices_i

+ PBpist, 250 * Distas0,i + Bpist, 500 - DiStsooi + Brime, 10 - TiMe1g; + Brime, 15
-Timeys; + Bpistxage - Dist x Age + Bincomesprice - INcome * Price

+ Bsustainabitityscoz - Sustainability = Co2 + g;

Moreover, we estimated a Latent Class Multinomial Logit Model to identify potential
subgroups within the shared mobility sample whose preferences differ systematically. The latent
class approach assumes that the population is composed of a finite number of unobserved classes,
each characterized by distinct preference structures. For this study, we specified two latent classes,
motivated by the expectation that respondents may differ in how they value sustainability, price,
distance to the vehicle, and travel time. A 2-segment model was run as it yielded more significant
results.

In addition to the multinomial logit, we estimated a Mixed Logit Model to account for
unobserved preference heterogeneity in shared-mobility choices. The utility specification followed
the same structure as in the MNL model, but the attribute coefficients were treated as random
rather than fixed. Each random parameter was expressed as:

Ui=uB+ of +e

Where the errors (i) are normally distributed random variables with mean zero and unit

variance. This formulation allows respondents to differ in how strongly they value changes in

sustainability level, price, distance to the vehicle, and travel time.

Results
After estimating all the candidate models discussed previously, we selected the categorical
MNL model with interaction effects as our final model. This selection was based on model fit and

information criteria; these being the log-likelihood values (LL), the Akaike information criterion

(AIC), and the Schwarz information criterion (BIC). The values obtained by these models can be
viewed in the appendix.

Our chosen model outperformed the alternative model options on every criterion (see Table
2), indicating that accounting for interaction effects greatly improves explanatory power.
Therefore, we will discuss the results obtained in this model.

Table 2 Mixed Logit Performance Characteristics

Model LL AIC BIC
MNL continuous -869.3 1748 1774
MNL categorical -866.38 1748.77 1790.95
MNL interactions cat -480.19 988.38 1054.45
Latent Class cat -779.91 1603 1719
MixedLogit cat -784.9 1601 1686
MNL interactions cont -855.23 1728 1775
Latent Class cont -783.89 1599 1684
Mixed Logit cont -725.11 1470 1522

Table 3 Multinomial Logit Model with interaction effects

Parameter Estimate Std. error P-value
b co2m -0.028 0.138 0.841
b co2h -0.151 0.176 0.389
b _pricem -1.033 0.214 0.000
b_priceh -2.520 0.450 0.000
b wdm -0.199 0.131 0.130
b wdh -0.691 0.150 0.000
b ttm -0.509 0.110 0.000
b tth -1.122 0.189 0.000
b co2m_green -0.350 0.226 0.121
b co2h green -0.669 0.272 0.015
b pricem wealthy 0.669 0.285 0.019

b _priceh wealthy 1.229 0.562 0.029

b wdm_ageold -0.235 0.240 0.327
b wdh ageold -0.504 0.292 0.085

Table 3 reports the parameter estimates. As expected, price, walking distance, and travel
time all exert a negative effect on utility. Both medium and high price levels are highly significant
and negative, indicating that respondents are strongly price sensitive. For walking distances, the
coefficient for 500 meters is negative and statistically significant, while the effect of 250 meters is
negative but not significant, suggesting that only relatively long walking distances substantially
reduce utility. Likewise, both the 10-minute and 15-minute travel time levels significantly decrease
utility, with the larger coefficient for 15 minutes indicating a stronger dislike of longer in-vehicle
time. Interestingly, the C02 coefficient for both high and low emissions is negative, but not

significant, suggesting that the model was not able to estimate how C02 impacts sustainability.

Small standard errors for Co2, travel time, and distance indicate that these effects would
not vary much across repeated samples, so we can be relatively confident in their size and sign.
Larger standard errors for the high price level and interaction effect terms imply more

uncertainty around those effects, even though their signs align with expectations.

The interaction between sustainability and self-reported sustainability shows that only the
high-emission level is statistically significant (p = 0.015), indicating that sustainability-aware
individuals strongly dislike the most polluting options, while the medium level is not significant
(p = 0.121). The income-price interactions are positive and significant at the 5% level (p = 0.019
and 0.029), meaning wealthier respondents are significantly less sensitive to both medium and
high price increases. For age-distance, the coefficients are negative but not statistically significant
at 5% (250 m: p = 0.327; 500 m: weakly significant at p = 0.085), suggesting older respondents

may be more averse to long walking distances, but this effect is only weakly supported by the data.

Willingness to pay

Using the medium price coefficient in Table 5 as a monetary benchmark, the sustainability
coefficients can be expressed as willingness to pay. For the average respondent, the utility loss
from increasing emissions from 0% to 50% (—0.151) corresponds to a WTP of only about
€0.15(0.151/1.033) to avoid that change. Among sustainability-oriented (“green”) respondents, the

relevant effect combines the main CO: coefficient and the interaction term (—0.151 — 0.669 = —

0.820), implying a much higher WTP of roughly €0.79 to avoid the high-emission option. This
shows that while the typical respondent places a relatively small monetary value on emission
reductions, environmentally conscious individuals are willing to pay several times more for the
most sustainable alternative.

Marginal Utility Effects

Table 4 Marginal Effects of Multinomial Logit Model with interaction effects

Attribute From To Alt DP
CO2 0% Co2 25% Co2 0.006945
CO2 0% Co2 50% Co2 0.03775
CO2_green 0% Co2 25% Co2 -0.0866
CO2 _green 0% Co2 50% Co2 0.1593
Price €2 €3.5 -0.2374
Price €2 €5 -0.4255
Price_Rich €2 €35 0.1612
Price_Rich €2 €5 0.27355
Walking Distance 100m 250m 0.04948
Walking Distance 100m 500m 0.1662
Walking Distance Age 100m 250m 0.05838
Walking Distance Age 100m 500m 0.1232
Time Travel 5 min 10 min 0.1244
Time Travel 5 min 15 min 0.2543

*Only absolute values are reported

Overall, the price attribute was found to have the biggest marginal effect. The highest
price level was found to bring the most disutility to respondents. It is also observed that price is
the single strongest driver in choice probability; moving from a price of 2 euros to 3.5 euros and
from 2 euros to 5 euros reduces the probability of choosing an option by nearly 24 and 40
percentage points, respectively. Interestingly, respondents with higher income are substantially
less price sensitive; the choice probabilities decrease by 16 and 27 percent, respectively. For
CO2 emission levels, we obtain that higher emissions cause a noticeable drop in preference
compared to moderate emissions. This effect is less obvious for the respondents who care more

about sustainability.

Conclusion and Recommendation

Our study showed that interaction effects and relaxing the assumption that attributes have
a linear effect on utility greatly improve model fit. It is therefore imperative that managers decide
on their target segment.

Based on our findings, it is found that on average, people value the sustainability level of
their shared mobility vehicle. It is thus beneficial for companies to perhaps express how green their
vehicles really are. There are several simple features companies could add to their product to
achieve this. We suggest a simple sticker on the vehicle with information on the CO2 emission
level of the vehicle would be effective. This is a cheap way to inform the consumer about the
sustainability level of a vehicle, leading to greater profits for the eco-friendlier options, as more
consumers would pick these vehicles. In addition, this is further backed by the fact that the
willingness to pay of more sustainability-aware individuals is substantially higher than that of non-
sustainability-aware individuals.

Furthermore, the interaction effects, particularly of price with income and age with walking
distance, suggest that placing mobility hubs in higher-income or older areas could justify premium
pricing, as these groups appear less sensitive to price increases and more willing to pay for reduced
access distance. Thus, highlighting a potential pool of customers that might normally revert to
other mobility options.

Since we have chosen a categorical model, we cannot generalize our findings and infer the
effect that an attribute would have when its value is outside of our attribute levels. We thus suggest
that further research could include more levels of attributes. We also would have liked to include
some other interaction effects. For example, how often people use shared mobility options and
how this would impact their choice of a sustainable option. Furthermore, running multiple pilots
would prove beneficial, especially when more interaction effects are included. Lastly, the lack of
an opt-out option may have biased the estimates. Thus, a larger sample size including an opt-out
alternative is recommended for more accurate results.

Taken together, our findings show that understanding preference heterogeneity is essential
for designing a valued sustainable mobility product. By refining attribute specifications,
incorporating more complex interactions, and expanding sample size, future work can build on

these results to support data-driven decision-making in this sector.

Bibliography

Fu, X., van Lierop, D., & Ettema, D. (2024). Shared micromobility in multimodal travel:
Evidence from three European cities. The international journal of urban policy and
planning, https://doi.org/10.1016/j.cities.2024.105664.

Montes, A., Gerzinic, N., Veeneman, W., van Oort, N., & Hoogendoorn, S. (2023). Shared
micromobility and public transport integration - A mode choice study using stated
preference data. Research in Transportation Economics, 99,
10.1016/j.retrec.2023.101302.

Reck, D. J., & Axhausen, K. W. (2021). Who uses shared micro-mobility services? Empirical
evidence from Zurich, Switzerland. Transportation research, 94,

https://doi.org/10.1016/j.trd.2021.102803.

Appendix

Appendix 1. Summary output tables of comprehensive analysis

Table 5 Estimates for Multinomial Logit model without interaction effects

Parameter Estimate Std. error P-value
b co2m -0.188 0.084 0.026
b co2h -0.441 0.107 0.000
b _pricem -0.754 0.108 0.000
b _priceh -1.772 0.199 0.000
b wdm -0.183 0.094 0.052
b wdh -0.665 0.107 0.000
b ttm -0.603 0.090 0.000
b _tth -1.208 0.137 0.000

Table 6 Log likelihood & Information criteria for MNL with no interaction effects

Statistic Value

Log-Likelihood -866.38
BIC 1790.95
AIC 1748.77

Table 7 basic MNL with continuous variables

Parameter Estimate Std. error P-value
b co2m -0.200 0.084 0.017
b co2h -0.441 0.104 0.000
b_price -0.592 0.065 0.000
b wd -0.002 0.000 0.000
b tt -0.122 0.014 0.000

Table 8 Log likelihood & Information criteria for basic continuous MNL

Statistic Value
Log-Likelihood -869.3
BIC 1774
AlIC 1748

Table 9 Results for Multinomial Logit model with interaction effects

Parameter Estimate Std. error P-value
b co2m -0.028 0.138 0.841
b _co2h -0.151 0.176 0.389
b_pricem -1.033 0.214 0.000
b priceh -2.520 0.450 0.000
b wdm -0.199 0.131 0.130
b wdh -0.691 0.150 0.000
b _ttm -0.509 0.110 0.000
b_tth -1.122 0.189 0.000
b co2m_green -0.350 0.226 0.121
b _co2h green -0.669 0.272 0.015
b _pricem_ wealthy 0.669 0.285 0.019
b _priceh wealthy 1.229 0.562 0.029
b wdm_ageold -0.235 0.240 0.327
b _wdh_ageold -0.504 0.292 0.085

Table 10 Log likelihood & Information criteria for MNL with interaction effects

Statistic Value
Log-Likelihood -480.19
BIC 1054.45
AIC 988.38

Table 11 Estimates for Multinomial Logit model with interaction effects

Parameter Estimate Std. error P-value
b co2m -0.028 0.138 0.841
b co2h -0.151 0.176 0.389
b_pricem -1.033 0.214 0.000
b_priceh -2.520 0.450 0.000
b wdm -0.199 0.131 0.130
b _wdh -0.691 0.150 0.000
b ttm -0.509 0.110 0.000
b_tth -1.122 0.189 0.000
b co2m_green -0.350 0.226 0.121
b _co2h green -0.669 0.272 0.015
b _pricem_ wealthy 0.669 0.285 0.019
b priceh wealthy 1.229 0.562 0.029
b wdm_ageold -0.235 0.240 0.327
b _wdh_ageold -0.504 0.292 0.085

Table 12 Results for Latent class model

Parameter Estimate Std. error P-value
b co2m 1 -0.430 0.265 0.105
b co2h 1 -0.773 0.321 0.016
b pricem 1 -0.449 0.228 0.049
b priceh 1 -0.865 0.329 0.008
b wdm 1 -0.655 0.444 0.140
b wdh 1 -1.473 0.903 0.103
b ttm 1 -1.256 0.786 0.110
b tth 1 -2.498 1.643 0.128
b co2m 2 -0.159 0.570 0.780
b co2h 2 -0.751 0.391 0.055
b _pricem 2 -1.381 0.522 0.008
b priceh 2 -3.357 1.769 0.058
b wdm 2 -0.067 0.228 0.770
b wdh 2 -0.513 0.191 0.007
b ttm 2 -0.513 0.200 0.114
b tth 2 -0.682 0.491 0.165
delta 1 -1.123 0.817 0.169
gamma_green 1 -0.115 0.926 0.901
gamma_ageold 1 0.353 0.915 0.699
gamma_gender 1 0.758 0.785 0.334
gamma_educated 1 0.602 0.528 0.254
gamma_ wealthy 1 0.448 0.529 0.397
delta 2 0.0 0.0 0.0
gamma_green 2 0.0 0.0 0.0
gamma_ageold 2 0.0 0.0 0.0
gamma_gender 2 0.0 0.0 0.0
gamma_educated 2 0.0 0.0 0.0
gamma_wealthy 2 0.0 0.0 0.0

Table 13 Log likelihood & Information criteria for Latent class model

Statistic Value
Log-Likelihood -779.91
BIC 1719.83

AIC

1603.84

Table 14 Results for Mixed logit model

Parameter Estimate Std. error P-value
mu_co2m 0.020 0.265 0.105
Sigma co2m -0.773 0.321 0.016
b pricem 1 -0.449 0.228 0.049
b _priceh 1 -0.865 0.329 0.008
b wdm 1 -0.655 0.444 0.140
b wdh 1 -1.473 0.903 0.103
b ttm 1 -1.256 0.786 0.110
b tth 1 -2.498 1.643 0.128
b co2m 2 -0.159 0.570 0.780
b co2h 2 -0.751 0.391 0.055
b _pricem 2 -1.381 0.522 0.008
b priceh 2 -3.357 1.769 0.058
b wdm 2 -0.067 0.228 0.770
b wdh 2 -0.513 0.191 0.007
b ttm 2 -0.513 0.200 0.114
b tth 2 -0.682 0.491 0.165
delta 1 -1.123 0.817 0.169
gamma_green 1 -0.115 0.926 0.901
gamma_ageold 1 0.353 0.915 0.699
gamma_gender 1 0.758 0.785 0.334
gamma_educated 1 0.602 0.528 0.254
gamma_ wealthy 1 0.448 0.529 0.397
delta 2 0.0 0.0 0.0
gamma_green 2 0.0 0.0 0.0
gamma_ageold 2 0.0 0.0 0.0
gamma_gender 2 0.0 0.0 0.0
gamma_educated 2 0.0 0.0 0.0
gamma_wealthy 2 0.0 0.0 0.0

Table 15 Log likelihood & Information criteria for Mixed Logit model

Statistic Value
Log-Likelihood -784.9
BIC 1686
AIC 1601

Table 16 Continuous Latent Class model estimates

Parameter Estimate Std. error P-value
b co2m 1 -0.397 0.160 0.011
b co2h 1 -0.657 0.266 0.013
b price 1 -0.279 0.125 0.025
b wd 1 -0.004 0.001 0.000
b tt 1 -0.282 0.053 0.000
b co2m 2 -0.255 0.160 0.111
b co2h 2 -0.811 0.215 0.000
b price 2 -1.002 0.155 0.000
b wd 2 -0.001 0.000 0.001
b tt 2 -0.065 0.019 0.001
delta 1 -1.284 0.727 0.078
g green | -0.261 0.518 0.614
g old 1 0.335 0.430 0.436
g gender 1 0.793 0.485 0.102
g educated 1 0.579 0.491 0.238
g wealthy 1 0.400 0.438 0.361
delta 2 0.0 0.0 0.0

g green 2 0.0 0.0 0.0

g old 2 0.0 0.0 0.0

g gender 2 0.0 0.0 0.0

g educated 2 0.0 0.0 0.0

g wealthy 2 0.0 0.0 0.0

Table 17 Log likelihood & Information criteria for Continuous Latent class model

Statistic Value
Log-Likelihood -783.89
BIC 1684
AIC 1599

Table 18 Continuous mixed Logit model estimates

Parameter Estimate Std. error P-value
mu_co2m -0.379 0.141 0.007
sigma_co2m 0.096 0.126 0.447
mu_co2h -1.034 0.221 0.000
sigma_co2h 0.963 0.189 0.000
mu_price -1.101 0.142 0.000
sigma_price 1.054 0.146 0.000
mu_wd -0.003 0.001 0.000
sigma_wd 0.004 0.001 0.000
mu_tt -0.237 0.032 0.000
sigma_tt -0.226 0.028 0.000

Table 19 Log likelihood & Information criteria for Continuous Mixed Logit model

Statistic Value
Log-Likelihood -725.11
BIC 1522

AIC 1470

Table 20 Estimates for continuous Multinomial Logit model with interaction effects

Parameter Estimate Std. error P-value
b co2m 0.002 0.097 0.983
b _co2h -0.131 0.122 0.284
b_price -0.709 0.095 0.000
b wd -0.002 0.000 0.000
b tt -0.125 0.014 0.000
b co2m_green -0.450 0.166 0.007
b co2h green -0.711 0.204 0.000
b price wealthy 0.237 0.135 0.079
b wd age -0.000 0.001 0.748

Table 21 Log likelihood & Information criteria for Continuous MNL with interaction effects

Statistic Value
Log-Likelihood -855.23
BIC 1775

AIC 1728

Appendix 2. Survey design

RSM
5/6;9\/“‘_9 Rotterdam School of Management

Erasmus University

Hi there,

Thank you for taking the time to participate in our survey. It should take about 3-5 minutes to
complete.

Please read the following carefully:

In this survey, you will be shown a hypothetical situation: You are 3 km away from your
destination and must choose between different shared rental mobility options. Each option
varies on four attributes:

» CO2 Emissions (Full lifecycle emissions of the vehicle compared to a city moped),

* Price for the full 3km trip,

» Walking distance to the vehicle,

+ and Travel time (not including walking time).

For each choice, please select the option you would most likely choose in real life.

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions) 0% of moped . %—
Price (3 km) €2.00 €3.50
Distance to vehicle 500 m 250 m
Travel time (3 km) 15 min 10 min

OA
Os

Choice tasks:

1)
Which mobility option would you choose?
CO2 emissions are relative to a city moped.
Option A Option B
CO2 emissions (0% of moped X 25% of moped
Price (3 km) €2.00 €3.50
Distance to vehicle 500 m 100 m
Travel time (3 km) 10 min 15 min
2)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions M m
Price (3 km) €5.00 €3.50
Distance to vehicle 500 m 250 m
Travel time (3 km) 10 min 5 min

3)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions 25% of moped (0% of moped)
Price (3 km) €2.00 €3.50
Distance to vehicle 100 m 500 m

Travel time (3 km) 15 min 10 min

4)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions M M
Price (3 km) €3.50 €5.00
Distance to vehicle 500 m 100 m
Travel time (3 km) 15 min 5 min

S)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions c 0% of moped S M
Price (3 km) €5.00 €3.50
Distance to vehicle 100 m 250 m
Travel time (3 km) 15 min 10 min

6)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions (0% of moped X 25% of moped
Price (3 km) €2.00 €3.50
Distance to vehicle 250 m 100 m

Travel time (3 km) 15 min 5 min

7)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions M) 0% of moped S
Price (3 km) €2.00 €3.50
Distance to vehicle 500 m 250 m
Travel time (3 km) 15 min 5 min

8)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions M m
Price (3 km) €2.00 €3.50
Distance to vehicle 500 m 250 m
Travel time (3 km) 10 min 5 min

9

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions 25% of moped (0% of moped)
Price (3 km) €3.50 €5.00
Distance to vehicle 500 m 100 m

Travel time (3 km) 15 min 5 min

10)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions M) 0% of moped S
Price (3 km) €5.00 €3.50
Distance to vehicle 100 m 500 m
Travel time (3 km) 5 min 10 min

11)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions M c 0% of moped N
Price (3 km) €2.00 €3.50
Distance to vehicle 250 m 500 m
Travel time (3 km) 10 min 15 min

12)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions 50% of moped (0% of moped)
Price (3 km) €5.00 €3.50
Distance to vehicle 500 m 250 m

Travel time (3 km) 5 min 15 min

13)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions ¢ 0% of moped y m
Price (3 km) €5.00 €3.50
Distance to vehicle 100 m 500 m
Travel time (3 km) 15 min 5 min

14)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions M M
Price (3 km) €3.50 €2.00
Distance to vehicle 100 m 250 m
Travel time (3 km) 10 min 15 min

15)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions 50% of moped (0% of moped)
Price (3 km) €3.50 €5.00
Distance to vehicle 100 m 500 m

Travel time (3 km) 15 min 5 min

16)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions M) 0% of moped S
Price (3 km) €2.00 €3.50
Distance to vehicle 500 m 250 m
Travel time (3 km) 5 min 10 min

17)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions c 0% of moped 3 m
Price (3 km) €3.50 €2.00
Distance to vehicle 100 m 250 m
Travel time (3 km) 5 min 15 min

18)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions 25% of moped (0% of moped)
Price (3 km) €3.50 €5.00
Distance to vehicle 500 m 100 m

Travel time (3 km) 5 min 10 min

19)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions M m
Price (3 km) €3.50 €2.00
Distance to vehicle 100 m 250 m
Travel time (3 km) 15 min 10 min

20)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions M M
Price (3 km) €5.00 €3.50
Distance to vehicle 250 m 100 m
Travel time (3 km) 5 min 10 min

21)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions (0% of moped X 50% of moped
Price (3 km) €2.00 €3.50
Distance to vehicle 500 m 250 m

Travel time (3 km) 15 min 10 min

22)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions M M
Price (3 km) €3.50 €5.00
Distance to vehicle 100 m 250 m
Travel time (3 km) 10 min 5 min

23)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions c 0% of moped 3 m
Price (3 km) €3.50 €2.00
Distance to vehicle 500 m 100 m
Travel time (3 km) 5 min 10 min

24)

Which mobility option would you choose?

CO2 emissions are relative to a city moped.

Option A Option B
CO2 emissions 50% of moped 25% of moped
Price (3 km) €3.50 €5.00
Distance to vehicle 100 m 250 m

Travel time (3 km) 5 min 10 min

Each respondent was shown 12 Choice tasks at random after which they were asked the
following demographic questions:

How concerned are you about the environment/climate (for example reducing carbon
emissions)?

O 1. Not at all concerned

O 2. Mostly unconcerned

(O 3. Neither concerned nor unconcerned
(O 4. Mostly concerned

O 5. Very concerned

What is your age?

Gender

O Female

O Male

(O Others

O Prefer not to say

What is the highest level of education you have achieved?

(O High school

(O Applied sciences
(O Bachelor's degree
(O Master's degree

O PhD

(O Other

What was your total household income before taxes during the past 12 months in Euros?

(O Less than 25,000 Euros

(O 25,000 - 49,999 Euros per year
(O 50,000 - 99,999 Euros per year
(O 100,000 - 199,999 Euros per year
(O 200,000 Euros per year or more

O Prefer not to say

Appendix 3. Syntax used to generate the generate the various models

Code MNL basic with categorical variables only
Step 1: Clear memory
rm(list = 1s())

Step 2: Set working directory for R initialization
setwd (dirname (rstudiocapi::getActiveDocumentContext () Spath))

Step 3: Load Apollo library
library (apollo)

Step 4: Initialize Apollo code
apollo initialise ()

Step 5: Set core controls

#H## ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo control = list(
USER ACTION: Specify model name
Note: Change the model name for every model that you run
modelName = "MNL basic",
USER ACTION: Provide model description
Note: Change the model description to reflect the current model
modelDescr = "basic model",

USER ACTION: Specify the column with the respondent id

indivID = "peep ID",

USER ACTION: Set path to the folder on your PC where the model results
will be stored

Note: Use the "outputs" folder that was created by the pre-
processing syntax

outputDirectory ="outputs"

)

Step 6: Load data
Set path to the folder on your PC where the dataset is stored

path dataset =
pastel (getwd () ,sep=.Platform$file.sep,"data with dummies final.csv")

Load dataset into global environment
database = read.csv(path dataset, header=TRUE)

Step 7: Initialize all parameters that needs to be estimated in your
MNL model

USER ACTION: The parameters for the attribute "Effectiveness" are
defined. Please,

complete the list with parameters that need to be
estimated. Provide
names for each parameter following by assigning a starting
value.
apollo beta=c(b co2m = 0,

b co2h = 0,

b pricem = 0,

b priceh = 0,

b wdm = 0,

b wdh = 0,

b ttm = 0,

b tth = 0)

#'COMPLETE THE LIST HERE')

Step 8: Define which parameters (as initialised above) should kept
fixed during estimation (in quotes); if none, keep empty
apollo fixed = c()

Step 9: Checkpoint for model inputs
apollo inputs = apollo validateInputs()

Step 10: Define model and likelihood function
apollo probabilities=function(apollo beta, apollo inputs,
functionality="estimate") {

Attach dataset inputs and detach after function exit
apollo attach(apollo beta, apollo inputs)
on.exit (apollo detach (apollo beta, apollo inputs))

Create list of choice probabilities P
P = 1list()

List of utility functions: these must use the same names as in

mnl settings (see below), order is irrelevant

V = list()
USER ACTION: Define utility function for alternative 1
V[["ALT1"]] = b _co2m * Varl2.l + b coZ2h * Varl3.1l + b pricem * Var22.1 +

b priceh * Var23.1 +

b wdm * Var32.1 + b wdh * Var33.1 + b ttm * Var42.1 + b tth * Var43.1

USER ACTION: Define utility function for alternative 2
V[["ALT2"]] = b _co2m * Varl2.2 + b coZh * Varl3.2 + b pricem * Var22.2 +

b priceh * Var23.2 +

b wdm * Var32.2 + b _wdh * Var33.2 + b_ttm * Var42.2 + b_tth * Var43.2

Define settings for MNL model component
mnl settings = list(
USER ACTION: Attach utility functions to the alternatives in your

dataset

alternatives = c(ALT1=1, ALT2=2),
USER ACTION: Define which alternatives are "available" in each

choice task; in our study, all alternatives are "available"

avail = list (ALT1=1, ALT2=1),
USER ACTION: Specify the column containing the chosen alternative;

beware, no dummies are used (!)

choiceVar = choice,
USER ACTION: Attach list of utility functions
utilities =V

)

Compute choice probabilities using MNL model
P[["model"]] = apollo mnl(mnl settings, functionality) #

functionality="estimate" as the parameters will be updated for estimating
the MNL model

Take product across observations for same individual (i.e.,

considering the panel structure of the data)

}

P = apollo panelProd (P, apollo inputs, functionality)

Prepare and return outputs of function
P = apollo prepareProb (P, apollo inputs, functionality)
return (P)

Step 11: Model estimation

model = apollo estimate(apollo beta, apollo fixed, apollo probabilities,
apollo inputs)

Step 12: Print model output with two-sided p-values

Note: if one-sided p-values are needed, set "printPval=1" (p-values
are not reported if set to "0")

modelOutput setting=list (printPVal=2)

apollo modelOutput (model, modelOutput setting)

Save model output with two-sided p-values
apollo_ saveOutput (model, modelOutput setting)

Code MNL with interactions with categorical variables only
Step 1: Clear memory
rm(list = 1s())

Step 2: Set working directory for R initialization
setwd (dirname (rstudiocapi: :getActiveDocumentContext () Spath))

Step 3: Load Apollo library
library (apollo)

Step 4: Initialise Apollo code
apollo initialise ()

Step 5: Set core controls

#H#4# ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo control = list(
USER ACTION: Specify model name
Note: Change the model name for every model that you run
modelName = "MNL I",
USER ACTION: Provide model description
#4 Note: Change the model description to reflect the current model
modelDescr = "MNL with interaction effects",

USER ACTION: Specify the column with the respondent id

indivID = "peep ID",

USER ACTION: Set path to the folder on your PC where the model results
will be stored

Note: Use the "outputs" folder that was created by the pre-
processing syntax
outputDirectory = "outputs"

)

Step 6: Load data

Set path to the folder on your PC where the dataset is stored

path dataset = pastel(getwd(),sep=.Platform$file.sep,"data with dummies-
2.csv")

Load dataset into global environment
database = read.csv(path dataset, header=TRUE)

Step 7: Initialize all parameters that needs to be estimated in your
MNL model

USER ACTION: The parameters for the attribute "Effectiveness" are
defined. Please,

complete the list with parameters that need to be
estimated. Provide
names for each parameter following by assigning a starting
value.
apollo beta=c(b co2m = 0,

b co2h = 0,

b pricem = 0,

b priceh = 0,

b wdm = O,

b wdh = 0,

b ttm = O,

b tth = 0,

b coZ2m treehugger = 0,
b coZh treehugger =
b pricem rich = 0,
b priceh rich = 0,
b wdm age = 0,

b wdh age = 0)

I
o
~

Step 8: Define which parameters (as initialized above) should kept
fixed during estimation (in quotes); if none, keep empty
apollo fixed = c()

Step 9: Checkpoint for model inputs
apollo inputs = apollo validateInputs()

Step 10: Define model and likelihood function
apollo probabilities=function(apollo beta, apollo inputs,
functionality="estimate") {

Attach dataset inputs and detach after function exit
apollo attach(apollo beta, apollo inputs)
on.exit (apollo detach (apollo beta, apollo inputs))

Create list of choice probabilities P
P = 1list()

List of utility functions: these must use the same names as in
mnl settings (see below), order is irrelevant

V = list()
USER ACTION: Define utility function for alternative 1
V[["ALT1"]] = (b_coZ2m * Varl2.l + b cozh * Varl3.1 + b pricem * Var22.1

+ b priceh * Var23.1 + b wdm * Var32.1 + b wdh * Var33.1 + b ttm * Var42.1
+ b _tth * Var43.1 +

b co2m treehugger * d26 * Varl2.l + b coZh treehugger *
d26 * Varl3.1l + b pricem rich * d30 * Var22.1 + b priceh rich * d30 *
Var23.1 +

b wdm age * d27 * Var32.1 + b_wdh age * d27 * Var33.1)

USER ACTION: Define utility function for alternative 2

V[["ALT2"]] =(b_co2m * Varl2.2 + b co2h * Varl3.2 + b pricem * Var22.2
+ b priceh * Var23.2 + b wdm * Var32.2 + b wdh * Var33.2 + b ttm * Var42.2
+ b tth * Var43.2 +
b coZm treehugger * d26 * Varl2.2 + b coZh treehugger *
d26 * Varl3.2 + b pricem rich * d30 * Var22.2 + b priceh rich * d30 *
Var23.2 +
b wdm age * d27 * Var32.2 + b _wdh age * d27 * Var33.2)

Define settings for MNL model component
mnl settings = list(
USER ACTION: Attach utility functions to the alternatives in your
dataset
alternatives = c(ALT1=1, ALT2=2),
USER ACTION: Define which alternatives are "available" in each
choice task; in our study, all alternatives are "available"
avail = list (ALT1=1, ALT2=1),
USER ACTION: Specify the column containing the chosen alternative;
beware, no dummies are used (!)

choiceVar = choice,
USER ACTION: Attach list of utility functions
utilities =V

)

Compute choice probabilities using MNL model

P[["model"]] = apollo mnl(mnl settings, functionality) #
functionality="estimate" as the parameters will be updated for estimating
the MNL model

Take product across observations for same individual (i.e.,
considering the panel structure of the data)
P = apollo panelProd (P, apollo inputs, functionality)

Prepare and return outputs of function
P = apollo prepareProb (P, apollo inputs, functionality)
return (P)

}

Step 11: Model estimation
model = apollo estimate(apollo beta, apollo fixed, apollo probabilities,
apollo inputs)

Step 12: Print model output with two-sided p-values

Note: if one-sided p-values are needed, set "printPval=1" (p-values
are not reported if set to "0")

modelOutput setting=list (printPVal=2)

apollo modelOutput (model, modelOutput setting)

Save model output with two-sided p-values
apollo saveOutput (model, modelOutput setting)

Code Latent Class with categorical variables only
Step 1: Clear memory

rm(list = 1s{())

Step 2: Set working directory for R initialization
setwd (dirname (rstudiocapi::getActiveDocumentContext () Spath))

Step 3: Load Apollo library
library (apollo)

Step 4: Initialise Apollo code
apollo initialise ()

Step 5: Set core controls

#H## ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo control = list(
USER ACTION: Specify model name
Note: Change the model name for every model that you run
modelName = "lc model",
USER ACTION: Provide model description
Note: Change the model description to reflect the current model
modelDescr = "this estimates 1lc",

USER ACTION: Specify the column with the respondent id

indivID = "peep ID",

Define number of cores used during estimation (used to speed up
estimation time)

nCores = 5,
Define seed used for any random number generation
seed = 100,

USER ACTION: Set path to the folder on your PC where the model results
will be stored

Note: Use the "outputs" folder that was created by the pre-
processing syntax

outputDirectory =
paste (getwd (), 'outputs', "practicum lcmodel 3class covar",sep=.Platform$fil
e.sep)

)

Step 6: Load data

Set path to the folder on your PC where the dataset is stored
path data =
paste(getwd(),"data with dummies final.csv",sep=.Platform$file.sep)
Load dataset into global environment

database = read.csv(path data, header=TRUE)

Step 7: Initialise all parameters that needs to be estimated in your
MNL model

USER ACTION: Define the (1) class-specific and (2) class membership
parameters

followed by assigning a starting value. The class-specific
alternative specific constant for the opt-out option and
the

constants for the class membership models are already
defined.

Please, complete the list with the parameters that are

missing.

Provide names for each parameter following by assigning a
starting value.
apollo beta=c(# Class 1
b coZ2m 1 = -0.1,
b co2h 1 = 0,
b pricem 1 = 0,
b priceh 1 0,
b wdm 1 =
b wdh 1
b ttm 1
b tth 1 =

I
[cNeNoNa
~ 0~

~

Class 2
b coZ2m 2 =0
b co2h 2 = 0,
b pricem 2 =
b priceh 2 = 0,
b wdm 2 = 0
b wdh 2 = 0,
b ttm 2 = 0
b tth 2 =0

Class membership - class 1
delta 1 = -0.1,

g _treehugger 1
g _ageold 1 = 0O,
g gender 1 =0
g _educated 1 =
g rich 1 =0,

Class membership - class 2
delta 2 = 0,
g_treehugger
g_ageold 2
g _gender 2 =
g _educated 2
g rich 2 =0

2

0,
0,
)

Step 8

USER ACTION: Complete the list with parameters (as initialised above)
that

should be kept fixed during estimation (in quotes)
apollo fixed = c("delta 2", "g treehugger 2", "g ageold 2", "g gender 2",
"g educated 2", "g rich 2")

Step 9: Define class membership model
apollo lcPars=function (apollo beta, apollo inputs) {

lcpars = list()

USER ACTION: Complete the empty lists by specifying the missing
class-specific parameters

which are needed for the class-specific utility
functions

lcpars[["b co2m"]] = list(b co2m 1, b coZm 2)

lcpars[["b _co2h"]] = list(b_co2h 1, b co2h 2)
lcpars[["b pricem"]] = list(b pricem 1, b pricem 2)
lcpars[["b priceh"]] = list(b priceh 1, b priceh 2)
lcpars[["b wdm"]] = list(b wdm 1, b wdm 2)
lcpars[["b _wdh"]] = list (b _wdh 1, b wdh 2)
lecpars[["b_ttm"]] = list(b ttm 1, b ttm 2)
lcpars[["b_tth"]] = list(b_tth 1, b tth 2)

List of class-membership functions:
These must use the same names as in classAlloc_settings (see below),
order is irrelevant

V=1ist ()
USER ACTION: Define class-membership function for class 1
V[["class 1"]] = delta 1 + g treehugger 1 * d26 + g ageold 1 * d27 +

g gender 1 * d28 + g educated 1 * d29 + g rich 1 * d30

USER ACTION: Define class-membership functions for class 2
V[["class 2"]] = delta 2 + g treehugger 2 * d26 + g ageold 2 * d27 +
g _gender 2 * d28+ g educated 2 * d29 + g rich 2 * d30

Define settings for class-membership model
classAlloc settings = list(
USER ACTION: Attach class-membership functions to the respective
classes
classes = c(class 1=1, class 2=2),
USER ACTION: Define which classes are "available" in our study, all
classes are "available"

avail =1,
USER ACTION: Attach list of class-membership functions
utilities =V

)

lcpars[["pi _values"]] = apollo classAlloc(classAlloc_settings)

return (lcpars)

}

Step 10: Checkpoint for model inputs
apollo inputs = apollo validateInputs()

Step 11: Define model and likelihood function
apollo probabilities=function(apollo beta, apollo inputs,
functionality="estimate") {

Attach inputs and detach after function exit
apollo attach(apollo beta, apollo inputs)
on.exit (apollo detach (apollo beta, apollo inputs))

Create list of choice probabilities P
P = list()

Define settings for MNL model component that are generic across
classes

mnl settings = list(

USER ACTION: Attach utility functions to the alternatives in your
dataset

alternatives = c(ALT1=1, ALT2=2),

USER ACTION: Define which alternatives are "available" in each
choice task; in our study, all alternatives are "available"

avail = list (ALT1=1, ALT2=1),

USER ACTION: Specify the column containing the chosen alternative;
beware, no dummies are used (!)

choiceVar = choice

)

List of utility functions for each latent class: these must use the
same names as in mnl settings (see above), order is irrelevant

USER ACTION: Set number of latent classes you are estimating in the
model

Note: You can call class-specific parameters by
NAME PARAM[[s]]; see example in ALT3 for the class-specific
alternative specific constant
for(s in 1:2){
V=1list ()
USER ACTION: Define utility function for alternative 1 for class "s"
V[["ALT1"]] = b co2m[[s]] * Varl2.1l + b co2h[[s]] * Varl3.1l +

b pricem[[s]] * Var22.1 + b priceh[[s]] * Var23.1 +
b ttm[[s]] * Var42.1 + b _tth[[s]] * Var43.1 + b wdm[[s]] * Var32.1 +
b wdh[[s]] * Var33.1

USER ACTION: Define utility function for alternative 2 for class "s"
V[["ALT2"]] = b _coZm[[s]] * Varl2.2 + b co2h[[s]] * Varl3.2 +
b pricem[[s]] * Var22.2 + b priceh[[s]] * Var23.2 +
b ttm[[s]] * Var42.2 + b _tth[[s]] * Var43.2 + b wdm[[s]] * Var32.2 +
b wdh[[s]] * Var33.2

mnl_settings$utilities = V
mnl settingsScomponentName = pastel("Class ", s)

Compute within-class choice probabilities using MNL model
P[[pasteO("Class ",s)]] = apollo mnl (mnl settings, functionality)

Take product across observations for same individual (i.e.,
considering the panel structure of the data)

P[[paste0("Class_",s)]] = apollo panelProd(P[[pasteO("Class ",s)]],
apollo inputs , functionality)

}

Compute latent class model probabilities
lc_settings = list (inClassProb = P, classProb=pi values)
P[["model"]] = apollo lc(lc settings, apollo inputs, functionality)

Prepare and return outputs of function
P = apollo prepareProb (P, apollo inputs, functionality)
return (P)

Step 12: Searching for starting value (recommended to ensure model
convergence!)
apollo beta = apollo searchStart(apollo beta,

apollo fixed,

apollo probabilities,

apollo inputs,

searchStart settings=list (nCandidates=2))

Step 13: Model estimation
model = apollo estimate(apollo beta, apollo fixed, apollo probabilities,
apollo inputs)

Step 14: Print model output with two-sided p-values

Note: if one-sided p-values are needed, set "printPvVal=1" (p-values
are not reported if set to "0")

modelOutput setting=list (printPVal=2)

apollo modelOutput (model, modelOutput setting)

Save model output with two-sided p-values
apollo saveOutput (model, modelOutput setting)

Code Mixed Logit with categorical variables only
Step 1: Clear memory
rm(list = 1s())

Step 2: Set working directory for R initialization
setwd (dirname (rstudicapi::getActiveDocumentContext () Spath))

Step 3: Load Apollo library
library (apollo)

Step 4: Initialise Apollo code
apollo initialise ()

Step 5: Set core controls

#H#4# ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo control = list(
USER ACTION: Specify model name
Note: Change the model name for every model that you run
modelName = "mixedLogitModel",
USER ACTION: Provide model description
#4 Note: Change the model description to reflect the current model
modelDescr = "mixing",
USER ACTION: Specify the column with the respondent id
indivID = "peep ID",

USER ACTION: Set logical variable to activate estimation of random
parameters

mixing = TRUE,

Define number of cores used during estimation (used to speed up
estimation time)

nCores =5,

USER ACTION: Set path to the folder on your PC where the model results
will be stored

Note: Use the "outputs" folder that was created by the pre-
processing syntax
outputDirectory = "outputs"

)

Step 6: Load data

Set path to directory on your PC where the dataset is stored

path data =

pastel (getwd () ,sep=.Platform$file.sep,"data with dummies final.csv")
Load dataset into global environment

database = read.csv(path data, header=TRUE)

database <- database([!is.na(databaseS$Schoice),]

Step 7: Initialise all parameters that needs to be estimated in your
Mixed Logit model

USER ACTION: Define the (1) mu parameters that estimate the sample mean,
and

(2) sigma parameters that estimate the sample
distribution

Please, complete the list with the parameters that are
missing.

Provide names for each parameter following by assigning a
starting value.

apollo beta=c(
mu_cozm = O,
sigma coZm = 0,
mu_cozh = 0O,
sigma co2h = 0,
mu pricem = 0
sigma pricem
mu priceh = 0,
sigma priceh =
mu wdm = 0,
sigma wdm = O,
mu wdh = 0,
sigma wdh = O,
mu ttm = 0,
sigma_ ttm = O,
mu tth = 0,
sigma_ tth = 0)

Step 8:

USER ACTION: Complete the list with parameters (as initialised above)

that

should be kept fixed during estimation (in quotes); if

none, keep empty

apollo fixed = c()

I~

Step 9: Set parameters for generating draws

USER ACTION: Define the number of one random variable for each sigma in
apollo beta

Use the command line interNormDraws

apollo draws = list(

interDrawsType = "mlhs",

interNDraws = 200,

interUnifDraws = c(),

interNormDraws = c("inter 1","inter 2","inter 3","inter 4", "inter 5",
"inter 6", "inter 7", "inter 8"),

intraDrawsType = "mlhs",

intraNDraws =0,

intraUnifDraws = c(),

intraNormDraws = c ()

)

Step 10: Create random parameters

USER ACTION: Write every random coefficient function

If necessary check the lecture slides

apollo randCoeff = function(apollo beta, apollo inputs) {
randcoeff = 1list ()

randcoeff[["b coZm"]] = mu coZ2m + sigma coZm * inter 1
randcoeff[["b coZh"]] = mu co2h + sigma co2h * inter 2
randcoeff[["b pricem"]] = mu pricem + sigma pricem* inter 3
randcoeff[["b priceh"]] = mu priceh + sigma priceh* inter 4
randcoeff[["b wdm"]] = mu wdm + sigma wdm* inter 5
randcoeff[["b wdh"]] = mu wdh + sigma wdh* inter 6
randcoeff[["b ttm"]] = mu ttm + sigma ttm* inter 7
randcoeff[["b tth"]] = mu tth + sigma tth* inter 8

return (randcoeff)

}

Step 11: Checkpoint for model inputs
apollo inputs = apollo validateInputs()

Step 12: Define model and likelihood function
apollo probabilities=function(apollo beta, apollo inputs,
functionality="estimate") {

Attach dataset inputs and detach after function exit
apollo attach(apollo beta, apollo inputs)
on.exit (apollo detach (apollo beta, apollo inputs))

Create list of choice probabilities P
P = list()

List of utility functions: these must use the same names as in
mnl settings (see below), order is irrelevant
V = list{()

USER ACTION: Define utility function for alternative 1

Code "effectiveness" and "risk false negative" attributes as numerical
variables

V[["ALT1"]] = (b_coZ2m * Varl2.l + b cozh * Varl3.1 + b pricem * Var22.1
+ b priceh * Var23.1 + b wdm * Var32.1

B + b wdh * Var33.1 + b _ttm * Var42.1 + b_tth * Var43.1)

USER ACTION: Define utility function for alternative 2
Code "effectiveness" and "risk false negative" attributes as numerical
variables
V[["ALT2"]] = (b_co2m * Varl2.2 + b cozh * Varl3.2 + b pricem * Var22.2
+ b priceh * Var23.2 + b wdm * Var32.2
+ b wdh * Var33.2 + b_ttm * Var42.2 + b_tth * Var43.2)

Define settings for MNL model component
mnl settings = list(
USER ACTION: Attach utility function to the choice alternative in
your dataset
alternatives = c(ALT1=1, ALT2=2),
USER ACTION: Define which alternatives are "available" in each
choice task

In our study, all alternatives are "available"

avail =1,

USER ACTION: Specify the column containing the chosen alternative
choiceVar = choice,

USER ACTION: Attach list of utility functions

utilities =V

)

Compute choice probabilities using MNL model

###4# functionality="estimate" as the parameters will be updated for
estimating the MNL model

P[["model"]] = apollo mnl (mnl settings, functionality)

Take product across observations for same individual
(i.e., considering the panel structure of the data)
P = apollo panelProd (P, apollo inputs, functionality)

Average across inter-individual draws
P = apollo avglInterDraws (P, apollo inputs, functionality)

Prepare and return outputs of function
P = apollo prepareProb (P, apollo inputs, functionality)
return (P)

}

Step 13: Model estimation
model = apollo estimate(apollo beta, apollo fixed, apollo probabilities,
apollo inputs)

Step 14: Print model output with two-sided p-values

Note: if one-sided p-values are needed, set "printPval=1" (p-values
are not reported if set to "0")

modelOutput setting=list (printPVal=2)

apollo modelOutput (model, modelOutput setting)

Save model output with two-sided p-values
apollo saveOutput (model, modelOutput setting)

Step 15: Estimate individual coefficients conditional on choice
sequence
conditionals = apollo conditionals (model,

apollo probabilities,

apollo_ inputs)

Set path to directory on your PC where the conditionals will be stored
path cond =

pastel (apollo_controlSoutputDirectory, sep=.PlatformSfile.sep, "conditionals
.RDS™)

Save conditionals

saveRDS (conditionals, file = path cond)

Code MNL basic with continuous variables
Step 1: Clear memory
rm(list = 1s{())

Step 2: Set working directory for R initialization
setwd (dirname (rstudioapi::getActiveDocumentContext () $path))

Step 3: Load Apollo library
library (apollo)

Step 4: Initialize Apollo code
apollo initialise ()

Step 5: Set core controls

#H## ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo control = list(
USER ACTION: Specify model name
Note: Change the model name for every model that you run
modelName = "MNL basic",
USER ACTION: Provide model description
#4 Note: Change the model description to reflect the current model
modelDescr = "basic model",
USER ACTION: Specify the column with the respondent id
indivID = "peep ID",

USER ACTION: Set path to the folder on your PC where the model results
will be stored

Note: Use the "outputs" folder that was created by the pre-
processing syntax

outputDirectory ="outputs"

)

Step 6: Load data

Set path to the folder on your PC where the dataset is stored

path dataset = pastel(getwd(),sep=.Platform$file.sep,"data with dummies-
2.csv")

Load dataset into global environment

database = read.csv(path dataset, header=TRUE)

Step 7: Initialize all parameters that needs to be estimated in your
MNL model

USER ACTION: The parameters for the attribute "Effectiveness" are
defined. Please,

complete the list with parameters that need to be
estimated. Provide
names for each parameter following by assigning a starting
value.
apollo beta=c(b _co2m = 0,

b co2h = 0,

b price = 0,

b wd = 0,

b tt = 0)

#'COMPLETE THE LIST HERE')

Step 8: Define which parameters (as initialised above) should kept
fixed during estimation (in quotes); if none, keep empty
apollo fixed = c()

Step 9: Checkpoint for model inputs
apollo inputs = apollo validateInputs()

Step 10: Define model and likelihood function
apollo probabilities=function(apollo beta, apollo inputs,
functionality="estimate") {

Attach dataset inputs and detach after function exit
apollo attach(apollo beta, apollo inputs)
on.exit (apollo detach (apollo beta, apollo inputs))

Create list of choice probabilities P
P = 1list()

List of utility functions: these must use the same names as in
mnl settings (see below), order is irrelevant

V = list ()
USER ACTION: Define utility function for alternative 1
V[["ALT1"]] = b _co2m * Varl2.1l + b coZ2h * Varl3.1l + b price * pricel +

b wd * wdl + b _tt * ttl

USER ACTION: Define utility function for alternative 2
V[["ALT2"]] = b _co2m * Varl2.2 + b co2h * Varl3.2 + b price * price2 +
b wd * wd2 + b_tt * tt2

Define settings for MNL model component
mnl settings = list(
USER ACTION: Attach utility functions to the alternatives in your
dataset
alternatives = c(ALT1=1, ALT2=2),
USER ACTION: Define which alternatives are "available" in each
choice task; in our study, all alternatives are "available"
avail = list (ALT1=1, ALT2=1),

USER ACTION: Specify the column containing the chosen alternative;
beware, no dummies are used (!)

choiceVar = choice,
USER ACTION: Attach list of utility functions
utilities =V

)

Compute choice probabilities using MNL model

P[["model"]] = apollo mnl(mnl settings, functionality) #
functionality="estimate" as the parameters will be updated for estimating
the MNL model

Take product across observations for same individual (i.e.,
considering the panel structure of the data)
P = apollo panelProd (P, apollo inputs, functionality)

Prepare and return outputs of function
P = apollo prepareProb (P, apollo inputs, functionality)
return (P)

}

Step 11: Model estimation
model = apollo estimate(apollo beta, apollo fixed, apollo probabilities,
apollo inputs)

Step 12: Print model output with two-sided p-values

Note: if one-sided p-values are needed, set "printPval=1" (p-values
are not reported if set to "0")

modelOutput setting=list (printPVal=2)

apollo modelOutput (model, modelOutput setting)

Save model output with two-sided p-values
apollo saveOutput (model, modelOutput setting)

Code MINL with interactions with continuous variables
Step 1: Clear memory
rm(list = 1s())

Step 2: Set working directory for R initialization
setwd (dirname (rstudicapi: :getActiveDocumentContext () Spath))

Step 3: Load Apollo library
library (apollo)

Step 4: Initialise Apollo code
apollo initialise ()

###4 Step 5: Set core controls
#H#4# ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo control = list(

USER ACTION: Specify model name

Note: Change the model name for every model that you run
modelName = "MNL I",

USER ACTION: Provide model description
Note: Change the model description to reflect the current model
modelDescr = "MNL with interaction effects",

USER ACTION: Specify the column with the respondent id

indivID = "peep ID",

USER ACTION: Set path to the folder on your PC where the model results
will be stored

Note: Use the "outputs" folder that was created by the pre-
processing syntax
outputDirectory = "outputs"

)

Step 6: Load data

Set path to the folder on your PC where the dataset is stored
path dataset =

pastel (getwd () ,sep=.Platform$file.sep,"data with dummies final.csv")

Load dataset into global environment
database = read.csv(path dataset, header=TRUE)

Step 7: Initialize all parameters that needs to be estimated in your
MNL model

USER ACTION: The parameters for the attribute "Effectiveness" are
defined. Please,

complete the list with parameters that need to be
estimated. Provide
names for each parameter following by assigning a starting
value.
apollo beta=c(b co2m = 0,

b co2h = 0,

b price = 0,

b wd = 0,

b tt = 0,

b coZ2m treehugger = 0,
b co2h treehugger =
b price rich = 0,

b wd age = 0)

|
o
~

Step 8: Define which parameters (as initialized above) should kept
fixed during estimation (in quotes); if none, keep empty
apollo fixed = c()

Step 9: Checkpoint for model inputs
apollo inputs = apollo validateInputs()

Step 10: Define model and likelihood function
apollo probabilities=function(apollo beta, apollo inputs,
functionality="estimate") {

Attach dataset inputs and detach after function exit
apollo attach(apollo beta, apollo inputs)
on.exit (apollo detach (apollo beta, apollo inputs))

Create list of choice probabilities P
P = 1list()

List of utility functions: these must use the same names as in
mnl settings (see below), order is irrelevant

V = list ()
USER ACTION: Define utility function for alternative 1
V[["ALT1"]] = (b_co2m * Varl2.l1 + b co2h * Varl3.1l + b price * pricel +

b wd * wdl + b _tt * ttl +

b coZ2m treehugger * d26 * Varl2.l + b coZh treehugger *
d26 * Varl3.1 + b price rich * d30 * pricel +

b wd age * d27 * wdl)

USER ACTION: Define utility function for alternative 2
V[["ALT2"]] =(b_co2m * Varl2.2 + b co2h * Varl3.2 + b price * price2 +
b wd * wd2 + b _tt * tt2 +
b coZm treehugger * d26 * Varl2.2 + b coZh treehugger *
d26 * Varl3.2 + b price rich * d30 * price2 +
b wd age * d27 * wd2)

Define settings for MNL model component
mnl settings = list(
USER ACTION: Attach utility functions to the alternatives in your
dataset
alternatives = c(ALT1=1, ALT2=2),
USER ACTION: Define which alternatives are "available" in each
choice task; in our study, all alternatives are "available"
avail = list (ALT1=1, ALT2=1),
USER ACTION: Specify the column containing the chosen alternative;
beware, no dummies are used (!)

choiceVar = choice,
USER ACTION: Attach list of utility functions
utilities =V

)

Compute choice probabilities using MNL model

P[["model"]] = apollo mnl(mnl settings, functionality) #
functionality="estimate" as the parameters will be updated for estimating
the MNL model

Take product across observations for same individual (i.e.,
considering the panel structure of the data)
P = apollo panelProd (P, apollo inputs, functionality)

Prepare and return outputs of function
P = apollo prepareProb (P, apollo inputs, functionality)
return (P)

}

Step 11: Model estimation
model = apollo estimate(apollo beta, apollo fixed, apollo probabilities,
apollo inputs)

Step 12: Print model output with two-sided p-values

Note: if one-sided p-values are needed, set "printPval=1" (p-values
are not reported if set to "0")

modelOutput setting=list (printPVal=2)

apollo modelOutput (model, modelOutput setting)

Save model output with two-sided p-values
apollo saveOutput (model, modelOutput setting)

Code Latent Class with continuous variables
Step 1: Clear memory
rm(list = 1s{())

Step 2: Set working directory for R initialization
setwd (dirname (rstudioapi::getActiveDocumentContext () $path))

Step 3: Load Apollo library
library (apollo)

Step 4: Initialise Apollo code
apollo initialise ()

Step 5: Set core controls

#H## ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo control = list(
USER ACTION: Specify model name
Note: Change the model name for every model that you run
modelName = "first 1lc",
USER ACTION: Provide model description
#4 Note: Change the model description to reflect the current model
modelDescr = "this estimates 1lc",
USER ACTION: Specify the column with the respondent id
indivID = "peep ID",

Define number of cores used during estimation (used to speed up
estimation time)

nCores = 5,
Define seed used for any random number generation
seed = 100,

USER ACTION: Set path to the folder on your PC where the model results
will be stored

Note: Use the "outputs" folder that was created by the pre-
processing syntax

outputDirectory =
paste(getwd (), 'outputs', "practicum lcmodel 3class covar",sep=.Platform$fil
e.sep)

)

Step 6: Load data

Set path to the folder on your PC where the dataset is stored
path data =
paste(getwd(),"data with dummies final.csv",sep=.Platform$file.sep)

Load dataset into global environment
database = read.csv(path data, header=TRUE)

Step 7: Initialise all parameters that needs to be estimated in your
MNL model
USER ACTION: Define the (1) class-specific and (2) class membership

parameters
followed by assigning a starting value. The class-specific
alternative specific constant for the opt-out option and
the
constants for the class membership models are already
defined.
Please, complete the list with the parameters that are
missing.
Provide names for each parameter following by assigning a
starting value.
apollo beta=c(# Class 1

b co2m 1 = -0.1,

b co2h 1 = 0,
b price 1 = 0,
b wd 1
b tt 1

0,
0,

Class 2

b co2m 2 = 0,
b co2h 2 = 0,
b price 2 = 0,
b wd 2
b tt 2

0,
0,

Class membership - class 1
delta 1 = -0.1,

g _treehugger 1 = 0,

g _ageold 1 = 0O,

g gender 1 =0
g _educated 1 =
g rich 1 =0,

Class membership - class 2
delta 2 = 0,
g_treehugger 2 = 0,
g ageold 2 = 0,
0,

0,

g _gender 2 =
g _educated 2
0

g rich 2 = 0)

Step 8

USER ACTION: Complete the list with parameters (as initialised above)
that

should be kept fixed during estimation (in quotes)
apollo fixed = c("delta 2", "g treehugger 2", "g ageold 2", "g gender 2",
"g educated 2", "g rich 2")

Step 9: Define class membership model
apollo lcPars=function (apollo beta, apollo inputs) {

lcpars = list()

USER ACTION: Complete the empty lists by specifying the missing
class-specific parameters

which are needed for the class-specific utility
functions

lcpars[["b co2m"]] = list(b _co2m 1, b coZm 2)

lcpars[["b _co2h"]] = list(b _co2h 1, b co2h 2)

lcpars[["b _price"]] = list(b price 1, b price 2)

lcpars[["b wd"]] = list(b wd 1, b wd 2)

lcpars[["b_tt"]] = list(b_tt 1, b _tt 2)

List of class-membership functions:
These must use the same names as in classAlloc_settings (see below),
order is irrelevant

V=1ist ()
USER ACTION: Define class-membership function for class 1
V[["class 1"]] = delta 1 + g treehugger 1 * d26 + g ageold 1 * d27 +

g gender 1 * d28 + g educated 1 * d29 + g rich 1 * d30

USER ACTION: Define class-membership functions for class 2
V[["class 2"]] = delta 2 + g treehugger 2 * d26 + g ageold 2 * d27 +
g _gender 2 * d28+ g educated 2 * d29 + g rich 2 * d30

Define settings for class-membership model
classAlloc settings = list(
USER ACTION: Attach class-membership functions to the respective
classes
classes = c(class 1=1, class 2=2),
USER ACTION: Define which classes are "available" in our study, all
classes are "available"

avail =1,
USER ACTION: Attach list of class-membership functions
utilities =V

)

lcpars[["pi values"]] = apollo classAlloc(classAlloc_settings)

return (lcpars)

}

Step 10: Checkpoint for model inputs
apollo inputs = apollo validateInputs()

Step 11: Define model and likelihood function
apollo probabilities=function(apollo beta, apollo inputs,
functionality="estimate") {

Attach inputs and detach after function exit
apollo attach(apollo beta, apollo inputs)
on.exit (apollo detach (apollo beta, apollo inputs))

Create list of choice probabilities P
P = 1list()

Define settings for MNL model component that are generic across
classes
mnl settings = list(
USER ACTION: Attach utility functions to the alternatives in your
dataset
alternatives = c(ALT1=1, ALT2=2),
USER ACTION: Define which alternatives are "available" in each
choice task; in our study, all alternatives are "available"
avail = list (ALT1=1, ALT2=1),
USER ACTION: Specify the column containing the chosen alternative;
beware, no dummies are used (!)
choiceVar = choice

)

List of utility functions for each latent class: these must use the
same names as in mnl settings (see above), order is irrelevant

USER ACTION: Set number of latent classes you are estimating in the
model

Note: You can call class-specific parameters by
NAME PARAM[[s]]; see example in ALT3 for the class-specific
alternative specific constant
for(s in 1:2){
V=1list ()
USER ACTION: Define utility function for alternative 1 for class "s"
V[["ALT1"]] = b coZ2m[[s]] * Varl2.1l + b co2h[[s]] * Varl3.1l +

b price[[s]] * pricel + b tt[[s]] * ttl + b wd[[s]] * wdl

USER ACTION: Define utility function for alternative 2 for class
"S"

V[["ALT2"]] = b_co2m[[s]] * Varl2.2 + b cozh[[s]] * Varl3.2 +
b price[[s]] * price2 + b tt[[s]] * tt2 + b wd[[s]] * wd2

mnl_settingsSutilities =V
mnl settings$componentName = paste(("Class ",s)

Compute within-class choice probabilities using MNL model
P[[paste0("Class ",s)]] = apollo mnl (mnl settings, functionality)

Take product across observations for same individual (i.e.,
considering the panel structure of the data)
P[[paste0("Class ",s)]] = apollo panelProd(P[[pasteO("Class ",s)]],
apollo inputs , functionality)
}
Compute latent class model probabilities
lc _settings = list (inClassProb = P, classProb=pi values)

P[["model"]] = apollo lc(lc_settings, apollo inputs, functionality)

Prepare and return outputs of function

P = apollo prepareProb (P, apollo inputs, functionality)
return (P)

}

Step 12: Searching for starting value (recommended to ensure model
convergence!)
apollo beta = apollo searchStart(apollo beta,

apollo fixed,

apollo probabilities,

apollo inputs,

searchStart settings=list (nCandidates=2))

Step 13: Model estimation
model = apollo estimate(apollo beta, apollo fixed, apollo probabilities,
apollo inputs)

Step 14: Print model output with two-sided p-values

Note: if one-sided p-values are needed, set "printPvVal=1" (p-values
are not reported if set to "0")

modelOutput setting=list (printPVal=2)

apollo modelOutput (model, modelOutput setting)

Save model output with two-sided p-values
apollo saveOutput (model, modelOutput setting)

Code Mixed Logit with continuous variables
Step 1: Clear memory
rm(list = 1s{())

Step 2: Set working directory for R initialization
setwd (dirname (rstudioapi::getActiveDocumentContext () $path))

Step 3: Load Apollo library
library (apollo)

Step 4: Initialise Apollo code
apollo initialise ()

Step 5: Set core controls

#H## ATTENTION: Your inputs must be enclosed in quotes like "this"
apollo control = list(
USER ACTION: Specify model name
Note: Change the model name for every model that you run
modelName = "mixedLogitModel",
USER ACTION: Provide model description
#4# Note: Change the model description to reflect the current model
modelDescr = "mixing",
USER ACTION: Specify the column with the respondent id
indivID = "peep ID",

USER ACTION: Set logical variable to activate estimation of random
parameters

mixing = TRUE,

Define number of cores used during estimation (used to speed up
estimation time)

nCores = 5,

USER ACTION: Set path to the folder on your PC where the model results
will be stored

Note: Use the "outputs" folder that was created by the pre-
processing syntax
outputDirectory = "outputs"

)

Step 6: Load data

Set path to directory on your PC where the dataset is stored

path data =

pastel (getwd () ,sep=.Platform$file.sep,"data with dummies final.csv")
Load dataset into global environment

database = read.csv(path data, header=TRUE)

Step 7: Initialise all parameters that needs to be estimated in your
Mixed Logit model

USER ACTION: Define the (1) mu parameters that estimate the sample mean,
and

(2) sigma parameters that estimate the sample
distribution
Please, complete the list with the parameters that are
missing.
Provide names for each parameter following by assigning a
starting value.
apollo beta=c(

mu coZ2m = 0,

sigma coZm = 0,

mu cozh = 0,

sigma co2h = 0,

mu price = 0,

sigma price
mu wd = O,
sigma wd = O,
mu tt = 0,
sigma tt

0,

0)

Step 8:

USER ACTION: Complete the list with parameters (as initialised above)
that

should be kept fixed during estimation (in quotes); if
none, keep empty

apollo fixed = c()

Step 9: Set parameters for generating draws

USER ACTION: Define the number of one random variable for each sigma in
apollo beta

Use the command line interNormDraws

apollo draws = list(
interDrawsType = "mlhs",

interNDraws = 200,

interUnifDraws = c(),

interNormDraws = c("inter 1","inter 2","inter 3","inter 4","inter 5"),
intraDrawsType = "mlhs",

intraNDraws =0,

intraUnifDraws = c(),

intraNormDraws = c ()

)

Step 10: Create random parameters

USER ACTION: Write every random coefficient function

If necessary check the lecture slides

apollo randCoeff = function(apollo beta, apollo inputs) {

randcoeff = 1list ()
randcoeff[["b coZm"]] = mu coZ2m + sigma coZ2m * inter 1
randcoeff

[]

[["b_coZh"]] = mu co2h + sigma coZh * inter 2
randcoeff [[']

[=

[

"b price"]] = mu price + sigma price* inter 3
randcoeff[["b wd"]] mu wd + sigma wd* inter 4
randcoeff[["b tt"]] = mu tt + sigma tt* inter 5

return (randcoeff)

}

Step 11: Checkpoint for model inputs
apollo inputs = apollo validateInputs()

Step 12: Define model and likelihood function
apollo probabilities=function(apollo beta, apollo inputs,
functionality="estimate") {

Attach dataset inputs and detach after function exit
apollo attach(apollo beta, apollo inputs)
on.exit (apollo detach (apollo beta, apollo inputs))

Create list of choice probabilities P
P = list{()

List of utility functions: these must use the same names as in
mnl settings (see below), order is irrelevant
V = list{()

USER ACTION: Define utility function for alternative 1

Code "effectiveness" and "risk false negative" attributes as numerical
variables

V[["ALT1"]] = b co2m * Varl2.l + b co2h * Varl3.1 + b price * pricel +
b wd * wdl + b_tt * ttl

USER ACTION: Define utility function for alternative 2

Code "effectiveness" and "risk false negative" attributes as numerical
variables

V[["ALT2"]] = b co2m * Varl2.2 + b co2h * Varl3.2 + b price * price2 +
b wd * wd2 + b_tt * tt2

Define settings for MNL model component
mnl settings = list(
USER ACTION: Attach utility function to the choice alternative in
your dataset
alternatives = c(ALT1=1, ALT2=2),
USER ACTION: Define which alternatives are "available" in each
choice task

In our study, all alternatives are "available"

avail =1,

USER ACTION: Specify the column containing the chosen alternative
choiceVar = choice,

USER ACTION: Attach list of utility functions

utilities =V

)

Compute choice probabilities using MNL model

functionality="estimate" as the parameters will be updated for
estimating the MNL model

P[["model"]] = apollo mnl (mnl settings, functionality)

Take product across observations for same individual
(i.e., considering the panel structure of the data)
P = apollo panelProd (P, apollo inputs, functionality)

Average across inter-individual draws
P = apollo avglnterDraws (P, apollo inputs, functionality)

Prepare and return outputs of function
P = apollo prepareProb (P, apollo inputs, functionality)
return (P)

}

Step 13: Model estimation
model = apollo estimate(apollo beta, apollo fixed, apollo probabilities,
apollo inputs)

Step 14: Print model output with two-sided p-values

Note: if one-sided p-values are needed, set "printPval=1" (p-values
are not reported if set to "0")

modelOutput setting=list (printPVal=2)

apollo modelOutput (model, modelOutput setting)

Save model output with two-sided p-values
apollo saveOutput (model, modelOutput setting)

Step 15: Estimate individual coefficients conditional on choice
sequence
conditionals = apollo conditionals (model,

apollo probabilities,

apollo inputs)

Set path to directory on your PC where the conditionals will be stored

path cond =

pastel (apollo_controlSoutputDirectory, sep=.PlatformSfile.sep, "conditionals
.RDS")
Save conditionals

saveRDS (conditionals, file = path cond)

	Bibliography
	Appendix
	Table 6 Log likelihood & Information criteria for MNL with no interaction effects
	Table 7 basic MNL with continuous variables
	Table 8 Log likelihood & Information criteria for basic continuous MNL
	Table 9 Results for Multinomial Logit model with interaction effects
	Table 10 Log likelihood & Information criteria for MNL with interaction effects
	Table 11 Estimates for Multinomial Logit model with interaction effects
	Table 12 Results for Latent class model
	Table 13 Log likelihood & Information criteria for Latent class model
	Table 14 Results for Mixed logit model
	Table 15 Log likelihood & Information criteria for Mixed Logit model
	Code MNL basic with categorical variables only
	Code MNL with interactions with categorical variables only
	Code Latent Class with categorical variables only
	Code Mixed Logit with categorical variables only
	Code MNL basic with continuous variables
	Code MNL with interactions with continuous variables
	Code Latent Class with continuous variables
	Code Mixed Logit with continuous variables

